线性代数的本质(九)——二次型与合同

news2024/12/22 19:11:11

文章目录

  • 二次型与合同
    • 二次型与标准型
    • 二次型的分类
    • 度量矩阵与合同

二次型与合同

二次型与标准型

Grant:二次型研究的是二次曲面在不同基下的坐标变换

由解析几何的知识,我们了解到二次函数的一次项和常数项只是对函数图像进行平移,并不会改变图形的形状和大小。以一元二次函数为例

在这里插入图片描述

而二次函数的二次项控制函数图像的大小和形状。以二元二次函数为例,观察 f ( x , y ) = 1 f(x,y)=1 f(x,y)=1 的截面图形

在这里插入图片描述

线性代数主要研究这些图形的二次项,通过线性变换使二次曲面变得规范简洁。

定义 n n n 元二次齐次多项式
f ( x 1 , ⋯   , x n ) = a 11 x 1 2 + 2 a 12 x 1 x 2 + ⋯ + 2 a 1 n x 1 x n + a 22 x 2 2 + 2 a 23 x 2 x 3 + ⋯ + 2 a 2 n x 2 x n + a n n x n 2 \begin{aligned} f(x_1,\cdots,x_n)=&a_{11}x_1^2+2a_{12}x_1x_2+\cdots+2a_{1n}x_1x_n \\ &+a_{22}x_2^2+2a_{23}x_2x_3+\cdots+2a_{2n}x_2x_n \\ &+a_{nn}x_n^2 \end{aligned} f(x1,,xn)=a11x12+2a12x1x2++2a1nx1xn+a22x22+2a23x2x3++2a2nx2xn+annxn2
称为二次型(quadratic form),这其实是二次曲面在一组坐标基下的解析表达式。

利用矩阵乘法,二次型可简记为
f = [ x 1 x 2 ⋯ x n ] [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] [ x 1 x 2 ⋮ x n ] = x T A x f=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix} \begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{m1}&a_{m2}&\cdots&a_{mn} \\ \end{bmatrix} \begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix} =\mathbf x^TA\mathbf x f=[x1x2xn] a11a21am1a12a22am2a1na2namn x1x2xn =xTAx
其中 A A A 是对称阵,其主对角线元素是平方项的系数,其余元素 a i j = a j i a_{ij}=a_{ji} aij=aji 是二次项 x i x j x_ix_j xixj 系数 2 a i j 2a_{ij} 2aij 的一半。显然,对称矩阵 A A A 与二次型 f f f 是相互唯一确定的。矩阵 A A A 及其秩分别称为二次型的矩阵和秩。

在某些情况下,没有交叉乘积项的二次型会更容易使用,即通过线性变换 x = C y \mathbf x=C\mathbf y x=Cy 来消除交叉乘积项
f = x T A x = x = C y y T ( C T A C ) y = y T Λ y f=\mathbf x^TA\mathbf x\xlongequal{\mathbf x=C\mathbf y}\mathbf y^T(C^TAC)\mathbf y=\mathbf y^T\Lambda\mathbf y f=xTAxx=Cy yT(CTAC)y=yTΛy
由于矩阵 A A A 是对称阵,由上节对称矩阵的对角化知道,总有正交矩阵 C C C,使
C − 1 A C = C T A C = Λ C^{-1}AC=C^TAC=\Lambda C1AC=CTAC=Λ
Λ \Lambda Λ 的对角线元素是 A A A 的特征值,于是二次型可简化为
f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ n y n 2 f=\lambda_1y_1^2+\lambda_2y_2^2+\cdots+\lambda_ny_n^2 f=λ1y12+λ2y22++λnyn2
这种只含平方项的二次型称为标准型(standard form)。显然,标准形的矩阵是对角阵。任何二次型都可通过正交变换化为标准型。系数全为 +1,-1或 0 的标准型叫做规范型(gauge form)。

定义:设 A A A B B B n n n阶矩阵,若有 n n n阶可逆矩阵 C C C,使
B = C T A C B=C^TAC B=CTAC
则称矩阵 A A A B B B合同,记为 A ≃ B A\simeq B AB 。显然,合同矩阵即为二次型在不同基下的矩阵。

性质:设矩阵 A ≃ B A\simeq B AB

  1. A A A 为对称阵,则 B B B 也为对称阵;
  2. 合同矩阵的秩相等 rank ( A ) = rank ( B ) \text{rank}(A)=\text{rank}(B) rank(A)=rank(B)

化二次型为标准型的三种方法:

  1. 求矩阵 A A A 的特征值和特征向量化为标准型;
  2. 使用多项式配方法化为标准型;
  3. 使用初等变换法将上方的矩阵 A A A 的位置变为对角阵(左乘为行变换,不影响下方单位阵变换)
    [ A I ] → [ C T A C C ] \begin{bmatrix}A\\I\end{bmatrix}\xrightarrow{}\begin{bmatrix}C^TAC\\C\end{bmatrix} [AI] [CTACC]

例:将椭圆方程 5 x 1 2 − 4 x 1 x 2 + 5 x 2 2 = 48 5x_1^2-4x_1x_2+5x_2^2=48 5x124x1x2+5x22=48 标准化

解:二次型的矩阵 A = [ 5 − 2 − 2 5 ] A=\begin{bmatrix}5&-2\\-2&5\end{bmatrix} A=[5225] ,特征值分别为 3和 7,对应的单位特征向量为
u 1 = [ 1 / 2 1 / 2 ] , u 2 = [ − 1 / 2 1 / 2 ] \mathbf u_1=\begin{bmatrix}1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix}, \mathbf u_2=\begin{bmatrix}-1/\sqrt{2}\\1/\sqrt{2}\end{bmatrix} u1=[1/2 1/2 ],u2=[1/2 1/2 ]
可使用特征向量 u 1 , u 2 \mathbf u_1,\mathbf u_2 u1,u2 作为二次型的标准正交基。正交变换矩阵和标准型矩阵分别为
C = ( u 1 , u 2 ) = [ 1 / 2 − 1 / 2 1 / 2 1 / 2 ] , Λ = [ 3 0 0 7 ] C=(\mathbf u_1,\mathbf u_2)=\begin{bmatrix}1/\sqrt{2}&-1/\sqrt{2}\\1/\sqrt{2}&1/\sqrt{2}\end{bmatrix},\quad \Lambda=\begin{bmatrix}3&0\\0&7\end{bmatrix} C=(u1,u2)=[1/2 1/2 1/2 1/2 ],Λ=[3007]
C C C 可将 A A A 正交对角化, Λ = C T A C \Lambda=C^TAC Λ=CTAC 。所以正交变换 x = P y \mathbf x=P\mathbf y x=Py 得到的标准型为
y T C y = 3 y 1 2 + 7 y 2 2 \mathbf y^TC\mathbf y=3y_1^2+7y_2^2 yTCy=3y12+7y22
新的坐标轴如图

在这里插入图片描述

二次型的分类

定义:设二次型 f = x T A x f=\mathbf x^TA\mathbf x f=xTAx ,如果对于任何 x ≠ 0 \mathbf x\neq 0 x=0

  1. 都有 f ( x ) > 0 f(\mathbf x)>0 f(x)>0,则称 f f f正定二次型,称 A A A正定矩阵
  2. 都有 f ( x ) < 0 f(\mathbf x)<0 f(x)<0,则称 f f f负定二次型,称 A A A负定矩阵
  3. 如果 f ( x ) f(\mathbf x) f(x) 既有正值又有负值,则称为不定二次型

从上节可以看出二次型的标准型是不唯一的,但二次型的秩是唯一的,在化成标准型的过程中是不变的,即标准型中含有的非零平方项的个数是不变的。

惯性定理:二次型和标准型中系数为正的平方项的个数相同,称为正惯性指数;系数为负的平方项的个数也相同,称为负惯性指数;正负惯性指数之差称为符号差

定理

  1. n n n元二次型为正定的充要条件是它的正惯性指数为 n n n
  2. 对称阵 A A A正定    ⟺    \iff 特征值全为正    ⟺    \iff 与单位阵合同 A ≃ I A\simeq I AI
  3. 对称阵 A A A 正定    ⟹    \implies A − 1 A^{-1} A1 正定;

度量矩阵与合同

Grant:合同矩阵为不同坐标系下的度量矩阵。

以二维空间为例,Grant 选用标准坐标系下的基向量 i , j \mathbf i,\mathbf j i,j,度量矩阵
A = [ ⟨ i , i ⟩ ⟨ i , j ⟩ ⟨ j , i ⟩ ⟨ j , j ⟩ ] A=\begin{bmatrix} \lang\mathbf i,\mathbf i\rang&\lang\mathbf i,\mathbf j\rang \\ \lang\mathbf j,\mathbf i\rang&\lang\mathbf j,\mathbf j\rang \end{bmatrix} A=[i,ij,ii,jj,j]

而 Jennifer 使用另外一组基向量 i ′ , j ′ \mathbf i',\mathbf j' i,j,过渡矩阵 P = [ a b c d ] P=\begin{bmatrix} a&b \\ c&d \end{bmatrix} P=[acbd]。即基向量 i ′ , j ′ \mathbf i',\mathbf j' i,j 在 Grant 的坐标系下的坐标表示为
p 1 = [ a c ] , p 2 = [ b d ] \mathbf p_1=\begin{bmatrix} a \\ c \end{bmatrix},\quad \mathbf p_2=\begin{bmatrix} b \\ d \end{bmatrix} p1=[ac],p2=[bd]
因此, Jennifer 的基向量间的内积
⟨ i ′ , i ′ ⟩ = p 1 T A p 1 ⟨ i ′ , j ′ ⟩ = p 1 T A p 2 ⟨ j ′ , i ′ ⟩ = p 2 T A p 1 ⟨ j ′ , j ′ ⟩ = p 2 T A p 2 \lang\mathbf i',\mathbf i'\rang=\mathbf p_1^TA\mathbf p_1\\ \lang\mathbf i',\mathbf j'\rang=\mathbf p_1^TA\mathbf p_2 \\ \lang\mathbf j',\mathbf i'\rang=\mathbf p_2^TA\mathbf p_1 \\ \lang\mathbf j',\mathbf j'\rang=\mathbf p_2^TA\mathbf p_2 i,i=p1TAp1i,j=p1TAp2j,i=p2TAp1j,j=p2TAp2
于是,Jennifer坐标系的度量矩阵
B = [ p 1 T A p 1 p 1 T A p 2 p 2 T A p 1 p 2 T A p 2 ] = [ p 1 T p 2 T ] A [ p 1 p 2 ] = P T A P B=\begin{bmatrix} \mathbf p_1^TA\mathbf p_1&\mathbf p_1^TA\mathbf p_2 \\ \mathbf p_2^TA\mathbf p_1&\mathbf p_2^TA\mathbf p_2 \end{bmatrix}= \begin{bmatrix} \mathbf p_1^T \\ \mathbf p_2^T \end{bmatrix}A\begin{bmatrix} \mathbf p_1 & \mathbf p_2 \end{bmatrix} =P^TAP B=[p1TAp1p2TAp1p1TAp2p2TAp2]=[p1Tp2T]A[p1p2]=PTAP
由此可知,合同矩阵刻画了两度量矩阵间的关系

当然,也可通过两个向量的内积在不同的坐标系中的计算公式获得两个度量矩阵间的关系。由过渡矩阵知道,同一个向量从 Jennifer 的坐标到 Grant 的坐标变换公式为
y = P x \mathbf y=P\mathbf x y=Px
在 Jennifer 的坐标系中,两向量 u , v \mathbf u,\mathbf v u,v 的坐标为 x 1 , x 2 \mathbf x_1,\mathbf x_2 x1,x2 ,度量矩阵为 B B B 。内积计算公式
⟨ u , v ⟩ = x 1 T B x 2 \lang\mathbf u,\mathbf v\rang=\mathbf x_1^TB\mathbf x_2 u,v=x1TBx2
在 Grant 的坐标系中,两向量 u , v \mathbf u,\mathbf v u,v 的的坐标为 y 1 , y 2 \mathbf y_1,\mathbf y_2 y1,y2,度量矩阵为 A A A 。内积计算公式
⟨ u , v ⟩ = y 1 T A y 2 = ( P x 1 ) T A ( P x 2 ) = x 1 T ( P T A P ) x 2 \lang\mathbf u,\mathbf v\rang=\mathbf y_1^TA\mathbf y_2 =(P\mathbf x_1)^TA(P\mathbf x_2)=\mathbf x_1^T(P^TAP)\mathbf x_2 u,v=y1TAy2=(Px1)TA(Px2)=x1T(PTAP)x2
于是,我们得到了两坐标系中度量矩阵的关系
B = P T A P B=P^TAP B=PTAP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1010276.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

HSRP(热备份路由选择协议)的概念,原理与配置实验

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 梦想从未散场&#xff0c;传奇永不落幕&#xff0c;持续更新优质网络知识、Python知识、Linux知识以及各种小技巧&#xff0c;愿你我共同在CSDN进步 目录 一、了解HSRP协议 1. 什么是HSRP协议 2、HSRP协议的…

2023年主流固定资管理系统的特征

随着科技的不断发展&#xff0c;固定资产管理系统也在不断演进&#xff0c;以满足企业日益增长的管理需求。在2023年&#xff0c;主流固定资产管理系统将呈现出一些重要的特征&#xff0c;包括RFID功能、低代码平台功能和云计算功能。易点易动固定资产管理系统正是结合了这些特…

UWB芯片DW3000之PDOA测向实现源码

介绍 DW3000芯片的双天线端口特性可以测量无线输入信号的相位。当与天线响应的信息相结合时,这些信息可以用来帮助确定到达的方向和传输的位置。 根据设备的不同,将有一个或两个天线端口。具有两个天线端口的设备称为PDoA部件,而其他是非PDoA部件(见表1)。当涉及到到达相位…

算法分析与设计编程题 贪心算法

活动安排问题 题目描述 解题代码 vector<bool> greedySelector(vector<vector<int>>& intervals) {int n intervals.size();// 将活动区间按结束时间的从小到大排序auto cmp [](vector<int>& interval1, vector<int>& interval2…

(文末赠书)我为什么推荐应该人手一本《人月神话》

能点进来的朋友&#xff0c;说明你肯定是计算机工作的朋友或者对这本书正在仔细琢磨着的朋友。 文章目录 1、人人都会编程的时代&#xff0c;我们如何留存?2、小故事说明项目管理着为什么必看这本书3、如何评价《人月神话&#xff1a;纪念典藏版》4、本书的目录&#xff08;好…

模方新建工程时,显示空三与模型坐标系不一致怎么解决

答:检查空三xml与模型的metadata.xml的坐标系是否一致&#xff0c;metadata文件是否有在data目录外面。 模方是一款针对实景三维模型的冗余碎片、水面残缺、道路不平、标牌破损、纹理拉伸模糊等共性问题研发的实景三维模型修复编辑软件。模方4.0新增单体化建模模块&#xff0c;…

无人机+三维实景建模助力古建筑保护,传承历史记忆

历史文化建筑&#xff0c;承载着过去各个时代的文化记忆。无论是保存还是修缮古建筑&#xff0c;都需要将其基本信息进行数字化建档&#xff0c;为修缮提供精准参考。根据住建部的要求&#xff0c;从2020年开始到2022年&#xff0c;全国需完成历史建筑100%测绘及系统录入工作&a…

OPENCV实现人类识别(包括眼睛、鼻子、嘴巴)

人脸识别步骤 # -*- coding:utf-8 -*- """ 作者:794919561 日期:2023/9/14 """ import cv2 import numpy as np # load xml face_xml = cv2.CascadeClassifier(F:\\learnOpenCV\\opencv\\data\\haarcascades\\haarcascade_frontalface_defaul…

计算机提示vcomp120.dll丢失怎样修复,vcomp120.dll丢失的4个修复方法分享

随着科技的飞速发展&#xff0c;计算机已经成为了人们日常生活和工作中不可或缺的重要工具。在享受计算机带来的便利的同时&#xff0c;我们也会遇到各种各样的问题&#xff0c;其中计算机丢失vcomp120.dll文件就是一种常见的困扰。vcomp120.dll是 Visual C Redistributable 的…

【操作系统】聊聊协程为什么可以支撑高并发服务

在实际的业务开发中&#xff0c;比如针对一个业务流程&#xff0c;调用三方&#xff0c;然后存储数据&#xff0c;从oss上获取数据。其实都是进行的同步调用&#xff0c;说白了就是A完成之后&#xff0c;B在继续完成。如果整个过程中A、B、C 分别耗时100、300、200毫秒。那么整…

vue基础知识十:Vue中组件和插件有什么区别?

一、组件是什么 回顾以前对组件的定义&#xff1a; 组件就是把图形、非图形的各种逻辑均抽象为一个统一的概念&#xff08;组件&#xff09;来实现开发的模式&#xff0c;在Vue中每一个.vue文件都可以视为一个组件 组件的优势 降低整个系统的耦合度&#xff0c;在保持接口不…

【VSCode】自动生成Jupyter(ipynb)文件的目录

下载插件 一键生成 然后就出来咯&#xff5e;

关于HTTP协议的概述

HTTP 的报文大概分为三大部分。第一部分是请求行&#xff0c;第二部分是请求的首部&#xff0c;第三部分才是请求的正文实体。 POST 往往是用来创建一个资源的&#xff0c;而 PUT 往往是用来修改一个资源的。 Accept-Charset&#xff0c;表示客户端可以接受的字符集。防止传过…

Python工程师Java之路(p)Module和Package

文章目录 1、Python的Module和Package2、Java的Module和Package2.1、Module2.1.1、分模块开发意义2.1.2、模块的调用 2.2、Package Module通常译作模块&#xff0c;Package通常译作包 1、Python的Module和Package Python模块&#xff08;Module&#xff09;&#xff1a;1个以.…

模拟实现C语言--strlen函数

模拟实现C语言–strlen函数 模拟实现C语言--strlen函数一、strlen函数是什么&#xff1f;二、strlen函数的模拟实现2.1 计数器方式实现strlen函数2.2 不创建临时变量计数器方式实现strlen函数2.3 指针-指针方式实现strlen函数 三、strlen函数的返回类型 一、strlen函数是什么&a…

vue-esign 签字组件

1、安装 npm install vue-esign --save 2、引入 // main.js import vueEsign from vue-esign Vue.use(vueEsign) 3、参数 属性说明类型默认值width画布宽度&#xff0c;即导出图片的宽度Number800height画布高度&#xff0c;即导出图片的高度Number300lineWidth画笔粗细Nu…

C++多线程的用法(包含线程池小项目)

一些小tips: 编译命令如下&#xff1a; g 7.thread_pool.cpp -lpthread 查看运行时间&#xff1a; time ./a.out 获得本进程的进程id&#xff1a; this_thread::get_id() 需要引入的库函数有&#xff1a; #include<thread> // 引入线程库 #include<mutex> //…

【python环境搭建】一台电脑下安装不同python版本时如何安装模块

我的环境中安装了2个版本的python&#xff1a; 一个时Anaconda的 一个是python3.10 多个版本python的安装 卸载 pip使用 详细方法可以看这个贴子 Windows环境同时安装多个版本的Python解释器 pip的使用 安装package pip install [package] 更新package pip install [pack…

下属不服管,当众顶撞自己怎么办?

作为领导者&#xff0c;面对下属公然顶撞自己&#xff0c;是一种不尊重和不合适的行为&#xff0c;可能会让你感到失望和困惑。然而&#xff0c;在处理这一情况时&#xff0c;你可以采取以下措施来妥善处理&#xff1a; 保持冷静&#xff1a;尽管受到了侮辱和指责&#xff0c;…

怎么获取别人店铺的商品呢?

jd.item_search_shop(获得店铺的所有商品) 为了进行电商平台 的API开发&#xff0c;首先我们需要做下面几件事情。 1&#xff09;开发者注册一个账号 2&#xff09;然后为每个JD应用注册一个应用程序键&#xff08;App Key) 。 3&#xff09;下载JDAPI的SDK并掌握基本的API…