竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

news2024/11/27 5:38:08

文章目录

  • 0 简介
  • 1 二维码检测
  • 2 算法实现流程
  • 3 特征提取
  • 4 特征分类
  • 5 后处理
  • 6 代码实现
  • 5 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 二维码检测

物体检测就是对数字图像中一类特定的物体的位置进行自动检测。基本的检测框架有两种:

一种是以滑动窗口为单位对图像进行扫描,对扫描所得的每个子图像提取特征,并用学习到的分类器来分类该特征并且判断该子图像是否为所检测的特定物体。对象检测的一个问题是,对象在图片中的位置和尺度是未知的。算法被要求能够检测各种不同位置、不同大小的对象,这样的特性被称为位置无关性和尺度无关性。为了达到这样的特性,常见的方法是使用多尺度框架,即:通过缩放原始图像,产生一组大小不同的图像序列,然后在序列的每幅图像中都使用固定尺寸
W×H
的滑动窗口,检测算法将判断每次滑动窗口所截取的图像子窗口是否存在目标对象。滑动窗口解决了位置无关性;而图像序列中存在至少一幅图像,其包含的目标对象的尺度符合滑动窗口的尺度,这样一个图像金字塔序列解决了尺度无关性。

另一种则是在整幅图像上首先提取兴趣点,然后仅对提取出来的兴趣点分类。

因此学长把物体检测方法分为基于滑动窗口的物体检测和基于兴趣点的物体检测两类。

无论是哪种做法,整个过程都可以分为特征提取和特征分类这两个主要阶段。也就是说,物体检测的主要问题是使用什么样的特征和使用什么样的分类器。

物体检测的难点在于如何用有限的训练集来学习到鲁棒的、可以适用到各种情况下的分类器。这里所说的各种情况包括有:图像中物体的大小不同;光照条件的差异所引起的图像明暗的不同;物体在图像中可能存在的旋转和透视情况;同类物体间自身存在的差异。

这里学长以定位二维码 / 条形码为例,简述基于机器学习实现物体检测的大致算法流程。

2 算法实现流程

算法流程图如下图所示:

在这里插入图片描述

我们先把输入图像分成 25×25
的图像子块。把图像子块作为特征提取和特征分类这两个模块的基本处理对象,即对图像子块进行纹理特征提取,特征分类时判定当前处理的图像子块是否属于二维条形码的一部分

在这里插入图片描述

在特征提取模块中,我们使用纹理特征提取算法从原始输入图像中提取出多分辨率直方

在特征分类时,我们希望保留所有属于二维条形码的图像子块,同时去除所有属于背景的图像子块。在该模块中,我们使用了自适应 Spatialboost 算法。

下图为经过这步处理后的理想输出结果,图中被标记的小方块表示他们属于二维条形码的一部分。

在这里插入图片描述

3 特征提取

图像的纹理特征可以描述物体特有的属性,用以区别其他物体。纹理特征总体可分为空域和频域两大类。在本文算法中,我们采用的纹理特征均属于空域的纹理特征,也是局部特征,它们分别是多分辨率直方图特征、局部二值模式特征和边缘方向直方图特征。

多分辨率直方图特征具备旋转无关的特点。这种纹理特征保留了灰度直方图特征计算简单和保存方便的特点。同时它又可以描述纹理的局部信息,弥补了传统的灰度直方图特征的缺点。

局部二值模式特征是一种计算复杂度较低的局部特征,它具有明暗无关和旋转无关的特点。
边缘方向直方图特征与全局的光照变化是无关的,它可以提取出二维条形码纹理的几何特点。

4 特征分类

学长开发的算法所使用的分类器为自适应 Spatialboost 算法,这是对 Spatialboost
算法的一个改进。使用这个分类器是由二维条形码的特点以及我们算法框架的特点所决定的。由于我们把原始输入图像分为若干大小固定的图像子块,属于二维条形码的图像子块在空间上有很强的关联性,或者说这些属于二维条形码的图像子块都是紧密相邻的。同时由于图像子块的尺寸不大,它所包含的信息量相对较少,有的时候就很难把属于二维条形码的图像子块和属于背景的图像子块区分开(它们在特征空间上可能重叠)。如果我们可以利用子块在空间上的联系,把空间信息加入到分类器中,将有利于提高分类器的准确率。

适应 Spatialboost
算法可以同时利用纹理特征以及子块在空间上的联系,在训练过程中,将纹理特征和空间信息自适应的结合起来训练分类器。这样,当前处理的子块的分类结果不仅依赖于它自己的纹理特征,还和它周围子块的分类结果密切相关。当属于背景的图像子块的纹理特征很接近于属于二维条形码的图像子块时,我们还是可以依靠和它相邻的背景子块来对它做出正确的分类。

5 后处理

经过特征提取和特征分类两个模块后,我们得到了对图像子块的分类结果,但最后我们期望得到的是对二维条形码的包围盒。在我们的设置下,自适应Spatialboost
分类器对背景子块的分类相当严格,此时对属于二维条形码的图像子块会有部分漏检发生,

在这里插入图片描述

因此在后处理模块中,我们先使用一种自适应聚类算法,对分类后的结果进一步改进,来精确的覆盖整个二维条形码。特征分类后定位到的子块的大小为
25×25,我们把这些子块再划分为 10×10 的小方块。接着以得到的 10×10 的子块为种子,用子块灰度值的方差为衡量标准往外聚类,聚类时的阈值设定为:

在这里插入图片描述

其中 M 是聚类开始时作为种子的子块的个数,k 为调整系数,在本文算法中 k设置为 0.5,Var 和 Mean
分别表示子块灰度值的均值和方差。由公式(3-1)可知,每幅图像的聚类阈值是自适应的计算得来的。聚类开始时首先从种子子块出发,计算它们周围的子块的灰度值方差,如果大于聚类阈值就把它标识为属于二维条形码,重复这个过程直到周围再没有子块符合聚类条件。图
3-5
是聚类算法的部分结果,第一行的图像是特征分类后的结果,准确的定位到了一部分二维条形码,但是没有完全的覆盖整个二维条形码,不利于我们输出最后的定位包围盒。第二行为聚类后的结果,可以看到小块几乎完全覆盖了整个二维条形码,此时再把这些小块合并为一个平行四边形就很方便了。

在这里插入图片描述

聚类后定位出来的小块基本上覆盖了整个二维条形码,最后我们只需要把定位出的小包围盒合并为大包围盒,并输出最后的定位结果。整个后处理流程见图

在这里插入图片描述

6 代码实现

这里演示条形码的检测效果:
在这里插入图片描述

关键部分代码实现:


# import the necessary packages
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required = True, help = "path to the image file")
# args = vars(ap.parse_args())

# load the image and convert it to grayscale
image = cv2.imread('./images/2.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# compute the Scharr gradient magnitude representation of the images
# in both the x and y direction
gradX = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)

# subtract the y-gradient from the x-gradient
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)

# blur and threshold the image
blurred = cv2.blur(gradient, (9, 9))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)

# construct a closing kernel and apply it to the thresholded image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

# perform a series of erosions and dilations
closed = cv2.erode(closed, None, iterations = 4)
closed = cv2.dilate(closed, None, iterations = 4)

# find the contours in the thresholded image, then sort the contours
# by their area, keeping only the largest one
(cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,
	cv2.CHAIN_APPROX_SIMPLE)
c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]

# compute the rotated bounding box of the largest contour
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1008923.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实时显示当前文件夹下的文件大小,shell脚本实现

图片来源于网络,如果侵权请联系博主删除! 需求: 写一个shell终端命令,实时显示当前文件夹下的文件大小 实现: 您可以使用以下的Shell脚本命令来实时显示当前文件夹下的文件大小: while true; docleardu …

【网络教程】超越平凡:一文揭示SSH-keygen的神秘世界

SSH(Secure Shell)是一种网络协议,用于安全地连接到远程计算机。SSH-keygen 是 SSH 协议的一部分,用于生成、管理和转换身份验证密钥对。 SSH-keygen 命令的基本语法如下: ssh-keygen [选项]以下是 ssh-keygen 命令的一些常用选项和参数: -t:指定要生成的密钥类型。例如…

基于传统的三维点云补全方法

目前,三维视觉受到了学术界和工业界的广泛关注,在目标检测、语义分割、三维重建等领域都取得了突破性的进展。然而,一个固有的问题是由于物体遮挡、镜面反射、物体自遮挡、视角变换和传感器分辨率的限制,传感器在真实场景下所获取…

元宇宙安全与著作权相关市场与技术动态:韩国视角

元宇宙市场动态 元宇宙安全与著作权维护技术现状 元宇宙有可能为商业创造巨大价值,尤其是在零售和时尚领域。时尚产品的象征性价值不仅在物理空间中得以保持,在虚拟空间中也是如此。通过元宇宙平台,企业可以开发虚拟产品,降低供…

指针扩展之——数组指针

前言:小伙伴们好久不见,因为刚刚开学事情比较多,所以好久没有更新,还请大家见谅。 那么从今天开始,博主承诺每周至少会出1-2篇博客,感谢小伙伴们的支持! 今天这篇文章,我们一起来了…

06-Redis缓存高可用集群

上一篇:05-Redis高可用集群之水平扩展 1.集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态,如果master节点异常,则会做主从切换,将某一台slave作为master&#xff0c…

C++之ostream操作函数operator<<、operator=、put、write、tellp、seekp、flush、swap总结(二百零八)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…

数据结构 > 算法的时间复杂度(1)

目录 1.算法效率 1.1如何衡量一个算法的好坏 1.2算法的复杂度 1.3复杂度在校招中的考察 2.时间复杂度 2.1时间复杂度的概念 2.2大O的渐进表示法 2.3特殊情况 1.算法效率 1.1如何衡量一个算法的好坏 如何衡量一个算法的好坏呢?比如对于以下斐波那契数列&…

定积分的性质:不等式性质与中值定理

目录 定积分的不等式性质 定积分的中值定理 定积分的常用计算公式 定积分的不等式性质 定积分的不等式性质主要包含两个方面:定积分的绝对值性质和估值定理。 首先,定积分的绝对值性质可以表述为:如果函数f(x)在区间[a,b]上可积&#xff…

Talk | 北京通用人工智能研究院黄思远:让通用智能体理解三维世界

本期为TechBeat人工智能社区第530期线上Talk! 北京时间9月13日(周三)20:00,北京通用人工智能研究院研究科学家—黄思远的Talk已准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “让通用智能体理解三维世界”,他分享了现有…

基于Pandas+余弦相似度+大数据智能护肤品推荐系统——机器学习算法应用(含Python工程源码)+数据集

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境Pycharm 环境 模块实现1. 文件读入2. 推荐算法1)数据预处理2)计算相似度3)排序并提取产品4)组合推荐算法 3. 应用模块1)得到最终产品2)筛选过…

【JavaEE】多线程(一)

多线程(一) 文章目录 多线程(一)进程操作系统进程PCB属性进程的状态进程的优先级进程的上下文CPU寄存器 进程的记账信息虚拟地址空间 线程线程与进程的区别 Java进行多线程编程 在了解多线程之前,我们先聊聊进程 进程 …

IO day6

1->x.mind 2-> #include <myhead.h> char c; ssize_t res1; //互斥锁 pthread_mutex_t mutexPTHREAD_MUTEX_INITIALIZER; //创建条件变量 pthread_cond_t condPTHREAD_COND_INITIALIZER; int flag0;//0:打印 1&#xff1a;倒置 void* callBack1(void* arg) { …

Python爬虫:获取必应图片的下载链接

文章目录 1. 前言2. 实现思路3. 运行结果 1. 前言 首先&#xff0c;说明一下&#xff0c;本篇博客内容可能涉及到版权问题&#xff0c;为此&#xff0c;小编只说明一下实现思路&#xff0c;至于全部参考代码&#xff0c;小编不粘贴出来。不过&#xff0c;小编会说明详细一些&a…

Mybatis系列之核心分析

文章目录 一、Mybatis的前世1、简述&#xff1a;2、什么是JDBC&#xff1a;3、什么是驱动&#xff1a;4、JDBC的开发步骤&#xff1a;《1》注册和加载数据库驱动《2》获得数据库连接《3》获得语句执行对象&#xff0c;然后执行SQL语句&#xff0c;获取执行结果&#xff0c;最后…

问道管理:机器人产业迎催化 黄金价格或将突破前高

昨日&#xff0c;沪指盘中震动下探&#xff0c;一度跌近1%逼近3100点&#xff0c;尾盘逐步止跌&#xff1b;深成指、创业板指均跌超1%。截至收盘&#xff0c;沪指跌0.45%报3123.07点&#xff0c;深成指跌1.14%报10255.87点&#xff0c;创业板指跌1.14%报2027.73点&#xff0c;科…

SpringBoot2.0(mybatis-plus初始使用)

目录 一&#xff0c;介绍二&#xff0c;SpringBoot2.x整合MybatisPlus Lombok2.1&#xff0c;添加依赖 pom2.2&#xff0c;配置数据库信息 application.properties2.3&#xff0c;工程结构初始化 三&#xff0c;创建接口返回统一对象四&#xff0c;创建bean五&#xff0c;创建…

iTOP-STM32MP157开发板Ubuntu镜像的烧写

由于 Ubuntu 镜像的烧写和之前的 QT 系统存在区别,QT 系统所使用的内核可以不用区分屏幕&#xff0c;而ubuntu 系统不同。所以我们在烧写镜像的时候需要修改对应的内核镜像&#xff0c;我们以烧写 ubuntu18 无桌面版本的镜像为例&#xff0c;镜像存放路径为“iTOP-STM32MP157 开…

Windows10/11强制删除多余的本地连接、以太网

如图进入到网络适配器准备删除多余的网络&#xff0c;发现无法删除&#xff0c;删除按钮是被禁用的。 解决办法 此电脑》右键》管理 找到对应连接下面的名称 设备管理器》网络适配器》Hyper-V Virtual Ethernet Adapter>右键》卸载设备 谨慎操作&#xff0c;卸载错的话…

基于视觉重定位的室内AR导航APP的大创项目思路(2):改进的项目思路——建图和定位分离

文章目录 一、建图二、定位首先是第一种方法&#xff1a;几何方法其次是第二种方法&#xff1a;图像检索方法最后是第三种方法&#xff1a;深度学习方法 前情提要&#xff1a; 是第一次做项目的小白&#xff0c;文章内的资料介绍如有错误&#xff0c;请多包含&#xff01; 一、…