第21章_瑞萨MCU零基础入门系列教程之事件链接控制器ELC

news2024/11/28 14:36:51

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=728461040949

配套资料获取:https://renesas-docs.100ask.net

瑞萨MCU零基础入门系列教程汇总: https://blog.csdn.net/qq_35181236/article/details/132779862


第21章 事件链接控制器ELC

本章目标

  • 了解ELC基本概念和RA6M5处理器的ELC模块;
  • 学会使用RASC配置ELC链接不同外设,并触发设备工作;

21.1 ELC简介

21.1.1 ELC的特征

ELC:Event Link Controller,事件链接控制器。它用于链接芯片上两个不同的外设,通过外设A的某个中断事件触发外设B去执行某个动作,这个过程是通过芯片内部硬件信号的连接完成的,不需要占用CPU资源。因而ELC可以帮助开发者完成许多同步触发的工作,而不会引起CPU资源的过多浪费。

ELC支持的事件类型多达219种。当产生了一个ELC事件的时候,也可以触发激活DTC功能。

21.1.2 ELC的系统框图

ECL的系统框图如下图所示:

  1. 事件控制器

  2. ELC相关寄存器:用户可以配置和观察这些寄存器来调试ELC。

  3. ELC支持连接的事件:并不是所有的中断事件都能够用于ELC,只有框图中显示的这些中断事件可以。

1.1.1 支持的事件

ELC支持互相连接触发的外设模块见下表:

  • 外部中断IRQ触发定时器GPT开始计数;
  • 定时器开始计数后,当计数溢出事件产生时,同步触发ADC转换和CTSU的测量模式;
  • 串口中断触发DTC开启数据传输;

这所有的触发操作都是无需CPU干预处理。

21.2 ELC模块的配置

21.2.1 配置ELC模块

ELC本身只是一个连接控制器,不涉及双方设备的设置。具体模块的触发条件,需要去设置该模块。因而在RASC中,ELC的配置很简单,只需要在FSP的“Stacks”中添加ELC的Stack即可,无需额外配置,如下图所示:

击“New Stack”后在“System”中找到“Event Link Controller(r_elc)”添加ELC模块即可(在用户代码里,再去打开、使能它即可)。

对于ELC的Stack配置,只能设置它的名字(使用默认值即可):

21.2.2 配置信息解读

使用RASC配置ELC并生成代码后,在common_data.c中生成一个elc_instance_t结构体类型的全局变量g_elc,它包括ELC控制参数成员、ELC配置信息、ELC控制接口成员。代码如下:

const elc_instance_t g_elc = {
    .p_ctrl = &g_elc_ctrl,
    .p_api  = &g_elc_on_elc,
    .p_cfg  = &g_elc_cfg
};
  • g_elc_ctrl:elc_instance_ctrl_t结构体类型,表明ELC的状态,原型如下:
typedef struct st_elc_instance_ctrl
{
    uint32_t     open;
    void const * p_context;
} elc_instance_ctrl_t;
  • g_elc_on_elc:ELC的控制接口,elc_api_t结构体指针,指向g_elc_on_elc结构体。g_elc_on_elc在r_elc.c中实现:
const elc_api_t g_elc_on_elc =
{
    .open                  = R_ELC_Open,
    .close                 = R_ELC_Close,
    .softwareEventGenerate = R_ELC_SoftwareEventGenerate,
    .linkSet               = R_ELC_LinkSet,
    .linkBreak             = R_ELC_LinkBreak,
    .enable                = R_ELC_Enable,
    .disable               = R_ELC_Disable,
};

这些控制API将会在下一小节进行介绍讲解。

  • g_elc_cfg:ELC的控制配置信息,它是elc_cfg_t结构体指针,此结构体原型如下:
typedef struct st_elc_cfg
{
    elc_event_t const link[ELC_PERIPHERAL_NUM]; ///< Event link register (ELSR) settings
} elc_cfg_t;

此结构体在elc_data.c中生成,以本章外部中断触发定时器开始计数为例,生成的列表内容如下:

const elc_cfg_t g_elc_cfg = {
    .link[ELC_PERIPHERAL_GPT_A] = ELC_EVENT_ICU_IRQ6, /* ICU IRQ6 (External pin interrupt 6) */
    .link[ELC_PERIPHERAL_GPT_B] = ELC_EVENT_ICU_IRQ1, /* ICU IRQ1 (External pin interrupt 1) */
    .link[ELC_PERIPHERAL_GPT_C] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_GPT_D] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_GPT_E] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_GPT_F] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_GPT_G] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_GPT_H] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_ADC0] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_ADC0_B] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_ADC1] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_ADC1_B] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_DAC0] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_DAC1] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_IOPORT1] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_IOPORT2] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_IOPORT3] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_IOPORT4] = ELC_EVENT_NONE, /* No allocation */
    .link[ELC_PERIPHERAL_CTSU] = ELC_EVENT_NONE, /* No allocation */
};
  • 第02行:IRQ6触发ELC_GPTA类事件;
  • 第03行:IRQ1触发ELC_GPTB类事件;

ELC_GPT_A~H是指ELC允许的GPT事件类型名称,如下表所示:

21.2.3 API接口及其使用

在上一小节已经了解到ELC的控制接口,其原型是elc_api_t结构体,如下:

typedef struct st_elc_api
{
    fsp_err_t (* open)(elc_ctrl_t * const p_ctrl, 
                       elc_cfg_t const * const p_cfg);
    fsp_err_t (* close)(elc_ctrl_t * const p_ctrl);
    fsp_err_t (* softwareEventGenerate)(elc_ctrl_t * const p_ctrl, 
                                        elc_software_event_t event_num);
    fsp_err_t (* linkSet)(elc_ctrl_t * const p_ctrl, 
                          elc_peripheral_t peripheral, 
                          elc_event_t signal);
    fsp_err_t (* linkBreak)(elc_ctrl_t * const p_ctrl, 
                            elc_peripheral_t peripheral);
    fsp_err_t (* enable)(elc_ctrl_t * const p_ctrl);
    fsp_err_t (* disable)(elc_ctrl_t * const p_ctrl);
} elc_api_t;

本小节就对这些操作API进行一一介绍讲解。

  1. 打开ELC设备
fsp_err_t (* open)(elc_ctrl_t * const p_ctrl, 
                   elc_cfg_t const * const p_cfg);
  • p_ctrl:elc_ctrl_t结构体类型,此结构体实际上是void类型,实际会指向elc_instance_ctrl_t结构体全局变量g_elc_ctrl;
  • p_cfg:elc_cfg_t结构体类型,实际会指向elc_cfg_t全局常量g_elc_cfg;

open函数的主要功能就是将事件连接列表的设置值,用来初始化ELC模块。可以参考以下代码来初始化ELC设备:

fsp_err_t err = g_elc.p_api->open(g_elc.p_ctrl, g_elc.p_cfg);
if(FSP_SUCCESS != err)
{
    printf("Function:%s\tLine:%d\r\n", __FUNCTION__, __LINE__);
    return;
}
  1. 关闭ELC设备
fsp_err_t (* close)(elc_ctrl_t * const p_ctrl);

关闭ELC函数实现的功能比较简单,就是将代表ELC的状态成员变量设置为CLOSED,并且失能ELC设备:

/* Set state to closed */
p_instance_ctrl->open = ELC_CLOSED;

/* Globally disable the operation of the Event Link Controller */
R_ELC->ELCR = ELC_ELCR_ELCON_DISABLE;
  1. 使能和失能ELC功能
fsp_err_t (* enable)(elc_ctrl_t * const p_ctrl);
fsp_err_t (* disable)(elc_ctrl_t * const p_ctrl);

只有在使能了ELC的情况下,外设模块的事件触发才能生效。而使能、失能ELC实际上就是对ELC的ELCR寄存器进行控制:

/* Globally enable ELC function */
R_ELC->ELCR = ELC_ELCR_ELCON_ENABLE;

/* Globally disable ELC function */
R_ELC->ELCR = ELC_ELCR_ELCON_DISABLE;
  1. 设置事件链接
fsp_err_t (* linkSet)(elc_ctrl_t * const p_ctrl, 
                      elc_peripheral_t peripheral, 
                      elc_event_t signal);

在初始化设置列表之后,如果要额外添加事件,可以使用这个API。支持的外设列表在r_elc_api.h中的elc_peripheral_t枚举中定义,支持的事件信号类型在bsp_elc.h中的elc_event_t枚举定义。

用户可以参考以下代码使用这个函数:

fsp_err_t err = R_ELC_LinkSet(&g_elc_ctrl, ELC_PERIPHERAL_DAC0, ELC_EVENT_ICU_IRQ10);
if(FSP_SUCCESS != err)
{
    printf("Function:%s\tLine:%d\r\n", __FUNCTION__, __LINE__);
    return;
}
  1. 断开事件链接
fsp_err_t (* linkBreak)(elc_ctrl_t * const p_ctrl, 
                        elc_peripheral_t peripheral);

断开连接只需要传入需要断开连接的设备序号即可。

  1. 件触发产生事件
fsp_err_t (* softwareEventGenerate)(elc_ctrl_t * const p_ctrl, 
                                    elc_software_event_t event_num);

ELC支持的软件触发事件只有两种,在r_elc_api.h中定义的elc_software_event_t枚举类型里列出了这2种事件:

typedef enum e_elc_software_event
{
    ELC_SOFTWARE_EVENT_0,              ///< Software event 0
    ELC_SOFTWARE_EVENT_1,              ///< Software event 1
} elc_software_event_t;

21.3 外部中断触发GPT启停

本实验会使用到按键外部中断、串口的printf和GPT,请读者阅读前面的章节参考配置相关外设模块。

21.3.1 设计目的

使用两个外部中断来触发GPT定时器计数的开始和停止,让用户了解ELC的使用方法。

21.3.2 模块配置

  1. 外部中断

外部中断在FSP的“Pins”中选好ICU的引脚后,配置各自的Stack如下图示:

本次实验选用的外部中断是IRQ1和IRQ6,使用的引脚是P205和P000。通过ELC使用IRQ触发GPT计数,是通过内部硬件的信号连接来实现的,所以不需要使用外部中断的中断服务函数及其中断回调函数。

  1. LC外设

在前文已经说明,ELC的配置除了模块名称外,并不需要做额外配置。

  1. GPT定时器

GPT定时器的配置除了通道、周期值、计数类型等常规配置如下图所示:

本章的实验还需要配置GPT模块的Input项中关于开启计数触发源和停止计数触发源的设置:

对于开启触发源和停止触发源,里面的可选项是一样的,本次实验使用IRQ6触发定时器开始计数,使用IRQ1触发定时器停止计数,因而“Start Source”和“Stop Source”的配置如下图所示:

image12

21.3.3 驱动程序

  1. 外部中断

外部中断IRQ信号会直接链接触发GPT,因而只需要在RASC中配置IRQ模块,不需要在代码中初始化IRQ。

  1. GPT初始化函数

对于GPT的初始化,只需要调用open、enable函数指针:

void GPTDrvInit(void)
{
    {
        fsp_err_t err = g_timer0.p_api->open(g_timer0.p_ctrl, g_timer0.p_cfg);
        if(FSP_SUCCESS != err)
            printf("Function:%s\tLine:%d\r\n", __FUNCTION__, __LINE__);
    }
    {
        fsp_err_t err = g_timer0.p_api->enable(g_timer0.p_ctrl);
        if(FSP_SUCCESS != err)
            printf("Function:%s\tLine:%d\r\n", __FUNCTION__, __LINE__);
    }
}

瑞萨对于GPT的enable函数解释是:“Enables external event triggers that start, stop, clear, or capture the counter.”,也就是使能外部中断事件触发计数器的开始、停止、清除和捕获。

  1. GPT中断回调函数和溢出等待函数

GPT的中断回调函数,只是设置一个溢出标志值,函数代码如下:

static volatile bool gGPTOverflow = false;
/* Callback function */
void gpt_timer0_callback(timer_callback_args_t *p_args)
{
    /* TODO: add your own code here */
    if(p_args->event == TIMER_EVENT_CYCLE_END)
        gGPTOverflow = true;
}

void GPTDrvWaitOverflow(void)
{
    while(!gGPTOverflow);
    gGPTOverflow = false;
}
  1. ELC初始化函数

对于ELC的初始化,只需要调用open、enable函数指针,代码如下:

void ELCDrvInit(void)
{
    {
        fsp_err_t err = g_elc.p_api->open(g_elc.p_ctrl, g_elc.p_cfg);
        if(FSP_SUCCESS != err)
        {
            printf("Function:%s\tLine:%d\r\n", __FUNCTION__, __LINE__);
            return;
        }
    }
    {
        fsp_err_t err = g_elc.p_api->enable(g_elc.p_ctrl);
        if(FSP_SUCCESS != err)
        {
            printf("Function:%s\tLine:%d\r\n", __FUNCTION__, __LINE__);
            return;
        }
    }
}`

21.3.4 测试程序

本次实验的测试程序比较简单,每次GPT计数溢出后就计数一次,串口将计数值打印,代码如下:

void ELCAppTest(void)
{
    ELCDrvInit();
    UARTDrvInit();
    GPTDrvInit();
    
    printf("\r\nStart ELC Test!\r\n");
    uint32_t tick = 0;
    while(1)
    {
        GPTDrvWaitOverflow();
        printf("Tick: %d\r", (int)tick++);
    }
}

21.3.5 测试结果

在hal_entry.c中的hal_entry()函数中调用测试函数,将编译出来的二进制文件烧写到板子上运行。按下开发板的按键后,就会触发开启定时器开始计数,将开发板的P205引脚和GND短接后就会触发定时器停止计数:


本章完

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1008419.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Django:二、模板、静态文件及请求相应

一、HTML 在app01中创建文件夹“templates”&#xff0c;在templates中创建HTML文件。 二、静态文件 创建静态文件夹&#xff0c;并把相关包导入 在HTML中引入Jquery等包&#xff0c;需要完成几步&#xff1a; 三、模板语法 1、字符串和列表 2、字典 3、if语句

TouchGFX之缓存位图

位图缓存是专用RAM缓冲区&#xff0c;应用可将位图保存&#xff08;或缓存&#xff09;在其中。 如果缓存了位图&#xff0c;在绘制位图时&#xff0c;TouchGFX将自动使用RAM缓存作为像素来源。位图缓存在许多情况下十分有用。 从RAM读取数据通常比从闪存读取要快&#xff08;特…

济南某类国企单位面试复盘

题目 背景1. 多线程有哪些基本参数&#xff1f;2. 线程池是如何实现的&#xff1f;3. ThreadLocal是怎么存的&#xff1f;4. JVM内存模型&#xff08;JDK1.8&#xff09;了解吗&#xff1f;5. 直接内存是用来存什么的&#xff1f;6.NIO采用的是Linux哪种IO模型7.常用的限流算法…

linux驱动开发--day4(字符设备驱动注册内部流程、及实现备文件和设备的绑定下LED灯实验)

一、字符设备驱动注册的内部过程 1.分配struct cdev对象空间 2.初始化struct cdev对象 3.注册cdev对象 二、注册字符设备驱动分步实现 1.分配字符设备驱动对象 2.字符设备驱动对象初始化 3.设备号的申请 4.根据申请的设备号和驱动对象注册驱动 三、open函数回调驱动中…

了解冒泡排序

package com.mypackage.array;import java.util.Arrays;public class Demo07 {public static void main(String[] args) {int[] a {3,2,6,7,4,5,6,34,56,7};int[] sort1 sort1(a); //调用我们自己写的排序方法后&#xff0c;返回一个排序后的数组System.out.println(Array…

密码学概述

密码学的概念 密码&#xff0c;最初的目的是用于对信息加密&#xff0c;计算机领域的密码技术种类繁多。但随着密码学的运用&#xff0c;密码还被用于身份认证、防止否认等功能上。密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则&#xff0c;变…

5.k8s jenkins集成k8s一键发布案例

文章目录 前言一、jenkins配置1.1 jenkins配置git1.2 jenkins 配置maven1.3 jenkins配置java 二、jenkins流水线配置2.1.新增项目2.2 springboot项目配置git仓库2.3 springboot项目配置maven打包2.4 系统配置 ssh到hadoop1配置&#xff0c;也就是k8s的master节点2.6 springboot…

Handler原理

Handler原理 前言1. Handler作用2. Handler概述3. 核心类 一、Handler源码分析1.创建Handler2.发送消息3.取消息4.消息处理5.线程切换 二、相关内容1.Handler原理2.epoll机制2.1什么是epoll机制&#xff1f;2.2 select/poll/epoll2.3 Handler中epoll是如何实现消息队列的阻塞和…

誉天在线项目~ElementPlus Tag标签用法

效果图 页面展现 <el-form-item label"课程标签"><el-tagv-for"tag in dynamicTags":key"tag"class"mx-1"closable:disable-transitions"false"close"handleClose(tag)"style"margin:5px;">…

解决Custom EmptyStringException: The string is empty

解决Custom EmptyStringException: The string is empty 解决Custom EmptyStringException: The string is empty摘要引言正文1. 理解异常的根本原因2. 处理空字符串问题3. 用户输入验证4. 异常处理 总结参考资料 博主 默语带您 Go to New World. ✍ 个人主页—— 默语 的博客&…

gitlab runner 不清理云端已经删除的tag和branch问题记录

在使用gitlab runner的过程中&#xff0c;发现由于git存储限制&#xff0c;不允许在a/b分支后创建a/b/c的分支。所以移除云端a/b分支后创建a/b/c分支。 但是由于gitlab runner出于拉取代码的速度考虑&#xff0c;将本地代码路径做了持久化缓存。 在上述场景中&#xff0c;新建…

Layui + Flask | 实现注册、登录功能(案例篇)(08)

此案例内容比较多,建议滑到最后点击阅读原文,阅读体验更佳。后续也会录制案例视频,将在本周内上传到同名的 b 站账号。 已经看了 layui 表单相关的知识,接下来就可以实现注册功能,功能逻辑如下: 项目创建 新建 flask 项目下载 layui 文件,解压之后复制到指定文件编写前…

算法--选择排序

算法步骤 /*** 选择排序** version 1.0* date 2023/09/01 17:57:05*/ public class Select {/*** 升序选择排序** param a 待排序的数组* date 2023/9/1 15:29:10*/public static void sortAes(int[] a) {//数组长度int length a.length;for (int i 0; i < length-2; i) {…

Web应用开发 - 实训三 B Servlet基础

Web应用开发 - 实训三 B Servlet基础 前言&#xff1a; 零、前期准备准备工具创建项目导入 jar 包配置运行设置 一、实训第一部分第一张图第二张图第三张图 二、实训第二部分第一张图第二张图 前言&#xff1a; eclipse 是不可能用的&#xff0c;并不是说它界面丑&#xff0c;…

Navicat导入Excel数据顺序变了

项目场景&#xff1a; Navicat导入Excel数据 问题描述 从Excel表格中导入数据到数据库中。但是&#xff0c;在导入的过程中&#xff0c;我们常会发现数据顺序出现了问题&#xff0c;导致数据错位&#xff0c;给数据的处理带来了极大的麻烦。 原因分析&#xff1a; 这个问题的…

【CVPR2020】DEF:Seeing Through Fog Without Seeing Fog论文阅读分析与总结

Challenge&#xff1a; 之前网络架构的设计假设数据流是一致的&#xff0c;即出现在一个模态中的对象也出现在另一个模态中。然而&#xff0c;在恶劣的天气条件下&#xff0c;如雾、雨、雪或极端照明条件&#xff0c;多模态传感器配置中的信息可能不对称。不同传感器在特征提取…

第六章 图 八、有向无环图的描述表达式

一、定义 有向无环图: 若一个有向图中不存在环&#xff0c;则称为有向无环图&#xff0c;简称DAG图(Directed Acyclic Graph) 解题方法:

如何将安防视频监控系统/视频云存储EasyCVR平台推流到公网直播间?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…

C++ QT qml 学习之 做个登录界面

最近在学习QT&#xff0c;也初探到qml 做ui 的灵活性与强大&#xff0c;于是手痒痒&#xff0c;做个demo 记录下学习成果 主要内容是如何自己编写一个按钮以及qml多窗口。 参考WX桌面版&#xff0c;做一个登录界面&#xff0c;这里面按钮是写的一个组合控件&#xff0c;有 按…

HTTP协议的基本概念与理解!

一、什么是HTTP协议 HTTP&#xff08;超文本传输协议&#xff09;是一个基于请求与响应&#xff0c;无状态的&#xff0c;应用层的协议&#xff0c;常基于TCP/IP协议传输数据&#xff0c;互联网上应用最为广泛的一种网络协议,所有的WWW文件都必须遵守这个标准。设计HTTP的初衷…