MySql学习之慢SQL优化和慢SQL案例

news2025/1/17 16:03:52

一、慢SQL优化思路

  • 慢查询日志记录慢SQL
  • explain查询SQL的执行计划
  • profile分析执行耗时
  • Optimizer Trace分析详情

1、慢查询日志记录慢SQL

show variables like 'slow_query_log%';
show variables like 'long_query_time';

查看下慢查询日志配置,我们可以使用show variables like 'slow_query_log%'命令。

在这里插入图片描述
如何启用慢查询日志呢?

临时开启:

set global slow_query_log='ON';

永久开启:

/etc/my.cnf中追加配置:
放到[mysqld]下:

slow_query_log=1
slow_query_log_file=/var/lib/mysql/localhost-slow.log

在这里插入图片描述

可以使用show variables like 'long_query_time’命令,查看超过多少时间才记录到慢查询日志。

在这里插入图片描述
通过慢查日志定位执行效率较低的SQL语句,重点关注分析。

2、explain查看分析SQL的执行计划

一般来说,我们需要重点关注type、rows、filtered、extra、key。

在这里插入图片描述
type
type表示连接类型,查看索引执行情况的一个重要指标。
以下性能从好到坏依次:system > const > eq_ref > ref > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

system:这种类型要求数据库表中只有一条数据,是const类型的一个特例,一般情况下是不会出现的。
const:通过一次索引就能找到数据,一般用于主键或唯一索引作为条件,这类扫描效率极高,速度非常快。
eq_ref:常用于主键或唯一索引扫描,一般指使用主键的关联查询
ref : 常用于非主键和唯一索引扫描
ref_or_null:这种连接类型类似于ref,区别在于MySQL会额外搜索包含NULL值的行
index_merge:使用了索引合并优化方法,查询使用了两个以上的索引。
unique_subquery:类似于eq_ref,条件用了in子查询
index_subquery:区别于unique_subquery,用于非唯一索引,可以返回重复值。
range:常用于范围查询,比如:between … and ,大于小于或 In 等操作
index:全索引扫描 该联接类型与ALL相同,除了只有索引树被扫描。这通常比ALL快,因为索引文件通常比数据文件小;
ALL:全表扫描

实际sql优化中,最后达到ref或range级别。

rows
该列表示MySQL估算要找到我们所需的记录,需要读取的行数对于InnoDB表,此数字是估计值,并非一定是个准确值。

filtered
该列是一个百分比的值,表里符合条件的记录数的百分比。简单点说,这个字段表示存储引擎返回的数据在经过过滤后,剩下满足条件的记录数量的比例。

extra
该字段包含有关MySQL如何解析查询的其他信息,它一般会出现这几个值:

Using filesort:表示按文件排序,一般是在指定的排序和索引排序不一致的情况才会出现。一般见于order by语句
Using index :表示是否用了覆盖索引。
Using temporary: 表示是否使用了临时表,性能特别差,需要重点优化。一般多见于group by语句,或者union语句。
Using where : 表示使用了where条件过滤. WHERE子句用于限制哪一个行匹配下一个表或发送到客户。除非你专门从表中索取或检查所有行,如果Extra值不为Using where并且表联接类型为ALL或index,查询可能会有一些错误。需要回表查询
Using index condition:MySQL5.6之后新增的索引下推。在存储引擎层进行数据过滤,而不是在服务层过滤,利用索引现有的数据减少回表的数据。

key
该列表示实际用到的索引名称。一般配合possible_keys列一起看。

3、profile分析执行耗时

explain只是看到SQL的预估执行计划,如果要了解SQL真正的执行线程状态及消耗的时间,需要使用profiling。开启profiling参数后,后续执行的SQL语句都会记录其资源开销,包括IO,上下文切换,CPU,内存等等,我们可以根据这些开销进一步分析当前慢SQL的瓶颈再进一步进行优化。

profiling默认是关闭,我们可以使用show variables like '%profil%'查看是否开启。

在这里插入图片描述
可以使用set profiling=ON开启。开启后,可以运行几条SQL,然后使用show profiles查看一下。

set profiling=ON

在这里插入图片描述
show profiles会显示最近发给服务器的多条语句,条数由变量profiling_history_size定义,默认是15。
如果我们需要看单独某条SQL的分析,可以show profile查看最近一条SQL的分析,也可以使用show profile for query id(其中id就是show profiles中的QUERY_ID)查看具体一条的SQL语句分析。
除了查看profile ,还可以查看cpu和io。

在这里插入图片描述

4、Optimizer Trace分析详情

profile只能查看到SQL的执行耗时,但是无法看到SQL真正执行的过程信息,即不知道MySQL优化器是如何选择执行计划。这时候,我们可以使用Optimizer Trace,它可以跟踪执行语句的解析优化执行的全过程。

我们可以使用set optimizer_trace="enabled=on"打开开关,接着执行要跟踪的SQL,最后执行select * from information_schema.optimizer_trace跟踪,如下:

在这里插入图片描述
大家可以查看分析其执行树,会包括三个阶段:

join_preparation:准备阶段
join_optimization:分析阶段
join_execution:执行阶段

查看json串
在这里插入图片描述

5、 确定SQL问题并采用相应的方案

最后确认问题,就采取对应的措施。

多数慢SQL都跟索引有关,比如不加索引,索引不生效、不合理等,这时候,我们可以优化索引。
优化SQL语句,load额外的字段,比如一些in元素过多问题(分批),深分页问题(基于上一次数据过滤等),进行时间分段查询。
SQl没办法很好优化,可以改用ES的方式,或者数仓。
如果单表数据量过大导致慢查询,则可以考虑分库分表。
如果数据库在刷脏页导致慢查询,考虑是否可以优化一些参数,跟DBA讨论优化方案。
如果存量数据量太大,考虑是否可以让部分数据归档。

二、慢查询案例

1、隐式转换

字段为字符串类型。
在这里插入图片描述
建立了B+Tree索引。
在这里插入图片描述
使用数值格式,没有走索引。
在这里插入图片描述
使用正确的格式,正常走索引。
在这里插入图片描述

字段为字串类型,是B+树的普通索引,如果查询条件传了一个数字过去,就会导致索引失效。

为什么第一条语句未加单引号就不走索引了呢?这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。隐式的类型转换,索引会失效。

2、最左匹配原则

MySQl建立联合索引时,会遵循最左前缀匹配的原则,即最左优先。如果你建立一个(a,b,c)的联合索引,相当于建立了(A)、(A,B)、(A,C)、(A,B,C) 四个索引。

建立联合索引(A、B、C)。
在这里插入图片描述

在这里插入图片描述
注意
B/C不是中的第一个列,不满足最左匹配原则,所以索引不生效。
在联合索引中,只有查询条件满足最左匹配原则时,索引才正常生效。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3、深分页问题

limit深分页问题,会导致慢查询。

batch_code字段建立索引。
在这里插入图片描述

select a.id,a.sp_no,a.sp_name,a.sp_result,a.sp_status from t_approve_record a 
where a.batch_code = '20221029133216' limit 100000,10;

这个SQL的执行流程:

通过普通二级索引树idx_batch_code,过滤batch_code条件,找到满足条件的主键id。
通过主键id,回到id主键索引树,找到满足记录的行,然后取出需要展示的列(回表过程)。
扫描满足条件的100010行,然后扔掉前100000行,返回。

如何优化深分页问题?

我们可以通过减少回表次数来优化。一般有标签记录法和延迟关联法

标签记录法

就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。

假设上一次记录到100000,则SQL可以修改为:

select a.id,a.sp_no,a.sp_name,a.sp_result,a.sp_status from t_approve_record a 
where a.id > 100000 limit 10;

这样的话,后面无论翻多少页,性能都会不错的,因为命中了id索引。
但是这种方式有局限性:需要一种类似连续自增的字段。

延迟关联法

延迟关联法,就是把条件转移到主键索引树,然后减少回表。

select a.id,a.sp_no,a.sp_name,a.sp_result,a.sp_status from t_approve_record a  
inner join
(select a.id from t_approve_record a WHERE a.batch_code = '20221029133216' limit 100000, 10)  b 
on a.id= b.id;

优化思路就是,先通过idx_batch_code二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。

explain看一下:

在这里插入图片描述

4、in元素过多

如果使用了in,即使后面的条件加了索引,还是要注意in后面的元素不要过多哈。in元素一般建议不要超过200个,如果超过了,建议分组,每次200一组进行哈。
oracle数据库有的版本还有数量限制,只能用exist替换或者临时表、in() or in()等方案。
Oracle 9i 中个数不能超过256,Oracle 10g个数不能超过1000个。

in查询为什么慢呢?

这是因为in查询在MySQL底层是通过n*m的方式去搜索,类似union
in查询在进行cost代价计算时(代价 = 元组数 * > IO平均值),是通过将in包含的数值,一条条去查询获取元组数的,因此这个计算过程会比较的慢,所以MySQL设置了个临界值(eq_range_index_dive_limit),5.6之后超过这个临界值后该列的cost就不参与计算了。因此会导致执行计划选择不准确。默认是200,即in条件超过了200个数据,会导致in的代价计算存在问题,可能会导致Mysql选择的索引不准确。

5、order by 走文件排序

如果order by 使用到文件排序,则会可能会产生慢查询。

在这里插入图片描述

order by文件排序效率为什么较低?
在这里插入图片描述

order by排序,分为全字段排序和rowid排序
它是拿max_length_for_sort_data和结果行数据长度对比,如果结果行数据长度超过max_length_for_sort_data这个值,就会走rowid排序,相反,则走全字段排序。

5.1 rowid排序

rowid排序,一般需要回表去找满足条件的数据,所以效率会慢一点。以下这个SQL,使用rowid排序,执行过程是这样:

explain
select a.sp_no,a.batch_code,a.sp_order from t_approve_record a  
where a.batch_code = '20221029133216' 
order by a.sp_order 
limit 10;
  1. MySQL为对应的线程初始化sort_buffer,放入需要排序的sp_order字段,以及主键id;
  2. 从索引树idx_batch_code, 找到第一个满足batch_code='20221029133216’条件的主键id,假设id为X;
  3. 到主键id索引树拿到id=X的这一行数据, 取sp_order和主键id的值,存到sort_buffer;
  4. 从索引树idx_batch_code拿到下一个记录的主键id,假设id=Y;
  5. 重复步骤 3、4 直到batch_code的值不等于’20221029133216’为止;
  6. 前面5步已经查找到了所有batch_code='20221029133216’的数据,在sort_buffer中,将所有数据根据sp_order进行排序;遍历排序结果,取前10行,并按照id的值回到原表中,取出sp_no,batch_code,sp_order几个字段返回给客户端。

5.2 全字段排序

同样的SQL,如果是走全字段排序是这样的:

  1. MySQL 为对应的线程初始化sort_buffer,放入需要查询的sp_no,batch_code,sp_order字段;
  2. 从索引树idx_batch_code, 找到第一个满足 batch_code='20221029133216’条件的主键 id,假设找到id=X;
  3. 到主键id索引树拿到id=X的这一行数据, 取sp_no,batch_code,sp_order三个字段的值,存到sort_buffer;
  4. 从索引树idx_batch_code拿到下一个记录的主键id,假设id=Y;
  5. 重复步骤 3、4 直到batch_code的值不等于’20221029133216’为止;
  6. 前面5步已经查找到了所有batch_code='20221029133216’的数据,在sort_buffer中,将所有数据根据sp_order进行排序;
  7. 按照排序结果取前10行返回给客户端。

sort_buffer的大小是由一个参数控制的:sort_buffer_size

如果要排序的数据小于sort_buffer_size,排序在sort_buffer内存中完成
如果要排序的数据大于sort_buffer_size,则借助磁盘文件来进行排序。
借助磁盘文件排序的话,效率就更慢一点。因为先把数据放入sort_buffer,当快要满时。会排一下序,然后把sort_buffer中的数据,放到临时磁盘文件,等到所有满足条件数据都查完排完,再用归并算法把磁盘的临时排好序的小文件,合并成一个有序的大文件。

5.3 如何优化order by的文件排序?

因为数据是无序的,所以就需要排序。如果数据本身是有序的,那就不会再用到文件排序啦。而索引数据本身是有序的,我们通过建立索引来优化order by语句
我们还可以通过调整max_length_for_sort_data、sort_buffer_size等参数优化

6、索引字段上使用(!= 或者 < >),索引可能失效

虽然age加了索引,但是使用了 != 或者<>,not in 这些时,索引如同虚设。

在这里插入图片描述
其实这个也是跟mySQL优化器有关,如果优化器觉得即使走了索引,还是需要扫描很多很多行的哈,它觉得不划算,不如直接不走索引。平时我们用!= 或者< >,not in的时候注意下。

7、索引字段上使用is null, is not null,索引可能失效

is null 不走索引。
在这里插入图片描述

is not null 不走索引,key=All。在这里插入图片描述
and或者or连接起来,索引照样失效。
在这里插入图片描述
很多时候,也是因为数据量问题,导致了MySQL优化器放弃走索引。同时,平时我们用explain分析SQL的时候,如果type=range,要注意一下哈,因为这个可能因为数据量问题,导致索引无效。

8、左右连接,关联的字段的编码格式不一样

2张表建立索引。
在这里插入图片描述

表1的字段是utf8编码,表2的字段是utf8mb4编码。
在这里插入图片描述

连接查询,走了全表扫描
在这里插入图片描述

换回相同的编码后
在这里插入图片描述

如果把它们的template_id字段改为编码一致,相同的SQL,还是会走索引。

在这里插入图片描述

9、group by使用临时表

sp_name字段未建索引。
在这里插入图片描述
Extra 这个字段的Using temporary表示在执行分组的时候使用了临时表
Extra 这个字段的Using filesort表示使用了文件排序

原因与group by的执行过程有关。

可以有这些优化方案:

group by 后面的字段加索引
order by null 不用排序。
尽量只使用内存临时表
使用SQL_BIG_RESULT。

建立索引后的执行计划:
在这里插入图片描述

10、delete + in子查询不走索引

查看执行计划,发现不走索引。

在这里插入图片描述
把delete换成select,就会走索引。
在这里插入图片描述
查看最终执行的sql:
在这里插入图片描述

 select `qw`.`t_approve_record`.`id` AS `id`,`qw`.`t_approve_record`.`template_id` AS `template_id`,`qw`.`t_approve_record`.`sp_no` AS `sp_no`,`qw`.`t_approve_record`.`sp_name` AS `sp_name`,`qw`.`t_approve_record`.`sp_result` AS `sp_result`,`qw`.`t_approve_record`.`apply_time` AS `apply_time`,`qw`.`t_approve_record`.`applyer_userid` AS `applyer_userid`,`qw`.`t_approve_record`.`approver_userid` AS `approver_userid`,`qw`.`t_approve_record`.`sp_status` AS `sp_status`,`qw`.`t_approve_record`.`sp_time` AS `sp_time`,`qw`.`t_approve_record`.`sp_use_time` AS `sp_use_time`,`qw`.`t_approve_record`.`is_overtime` AS `is_overtime`,`qw`.`t_approve_record`.`last_update` AS `last_update`,`qw`.`t_approve_record`.`delete_time` AS `delete_time`,`qw`.`t_approve_record`.`create_time` AS `create_time`,`qw`.`t_approve_record`.`batch_code` AS `batch_code`,`qw`.`t_approve_record`.`sp_order` AS `sp_order` 
 from `qw`.`t_approve_template` 
 join `qw`.`t_approve_record` 
 where (`qw`.`t_approve_record`.`template_id` = `qw`.`t_approve_template`.`template_id`)

可以发现,实际执行的时候,MySQL对select in子查询做了优化,把子查询改成join的方式,所以可以走索引。
但是很遗憾,对于delete in子查询,MySQL却没有对它做这个优化。

11、其它索引失效场景,如InnoDB下like '%xxx’索引失效

在这里插入图片描述
在这里插入图片描述
索引失效
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/10083.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

对MMVAE中IWAE代码实现的理解

原始的IWAE 优化目标&#xff1a; LIWAE(x1:M)Ez1:K∼qΦ(z∣x1:M)[log⁡∑k1K1KpΘ(zk,x1:M)qΦ(zk∣x1:M)]&#xff08;1&#xff09;\mathcal{L}_{\mathrm{IWAE}}\left(\boldsymbol{x}_{1: M}\right)\mathbb{E}_{\boldsymbol{z}^{1: K} \sim q_{\Phi}\left(\boldsymbol{z} …

JavaScript

目录 1、JavaScript简介 2、JavaScript引入方式 2.1、内部脚本 2.2、外部脚本 3、JavaScript基础语法 3.1、书写语法 3.2、输出语句 3.3、变量 3.4、数据类型 3.5、运算符 3.5.1、 和 的区别 3.5.2、类型转换 3.6、流程控制语句 3.6.1、if语句 3.6.3、for循环语…

【毕业设计】时间序列天气预测系统 - LSTM

文章目录0 前言1 数据集介绍2 开始分析2.1 单变量分析2.1.1 温度变量2.2 将特征和标签切片2.3 建模2.4 训练模型2.5 多变量分析2.5.1 压强、温度、密度随时间变化绘图2.5.2 将数据集转换为数组类型并标准化2.5.3 多变量建模训练训练3 最后0 前言 &#x1f525; Hi&#xff0c;…

vue项目身份认证,vuex,token

vuex存储用户登录信息以及解决页面刷新vuex数据丢失问题 我的文章&#xff1a;vuex页面刷新数据丢失问题的多种解决方法 有写到 身份认证 虽然完成了登录功能&#xff0c;但实际上现在用户没登录也能访问(对应的url),这样的话显得登录功能毫无意义。 为了让登录变得有意义&am…

【Linux】Linux系统管理详解

目录一.服务管理1.Linux中的进程和服务2.systemctl&#xff08;CentOS 7版本&#xff09;(1)基本语法(2)经验技巧二.系统运行级别1.CentOS的运行级别三.配置服务开机自启和关闭防火墙1.图形化服务开机自启2.命令行服务开机自启3.关闭防火墙自启动四.关机重启以下内容都是基于Ce…

排序算法-希尔排序

希尔排序 概念 希尔排序(Shell Sort)是插入排序的一种&#xff0c;它是针对直接插入排序算法的改进。 希尔排序又称缩小增量排序&#xff0c;因 DL.Shell 于 1959 年提出而得名。 它通过比较相距一定间隔的元素来进行&#xff0c;各趟比较所用的距离随着算法的进行而减小&a…

通达信最新交易接口系统开发源码有哪些?

通达信最新交易接口其实跟市面上的自动交易接口api是比较安全稳定接口&#xff0c;只需要通过第三方证券公司完成交易&#xff0c;也或者是个人与机构做私募量化投资也是可以的。但是最近小编就有注意到&#xff0c;在此之前的通达信接口已经完成了再次升级&#xff0c;那么&am…

JAVA开发(分布式SpringCloud全家桶一些组件读法)

配置管理&#xff0c;服务发现&#xff0c;断路器&#xff0c;路由&#xff0c;微代理&#xff0c;事件总线&#xff0c;全局锁&#xff0c;决策竞选&#xff0c;分布式会话构成SpringCloud的集合。 Eureka服务注册与发现&#xff08;Eureka&#xff1a;怎么读&#xff1f;&…

没基础的大学生如何自学c语言 ?

C语言具有高效、灵活、功能丰富、表达力强和较高的可移植性等特点&#xff0c;在程序设计中备受青睐。真的太多人学也有太多要学的东西了&#xff0c;以至于后台总有人问C语言该怎么学&#xff0c;甚至还有具体问编程问题的。 这一点专门针对「大部分时间都在写着重复的代码&a…

uniapp初步搭建:如何引入uview库(跨移动多端ui库)

uView是uni-app生态专用的UI框架&#xff0c;uni-app 是一个使用 Vue.js 开发所有前端应用的框架&#xff0c;开发者编写一套代码&#xff0c; 可发布到iOS、Android、H5、以及各种小程序(微信/支付宝/百度/头条/QQ/钉钉)等多个平台(引言自uni-app网) 1. 查看项目根目录有没有p…

公钥密码学中的公钥和私钥

公钥密码学解释&#xff1a;它是什么&#xff1f; 公钥基础设施 (PKI) 用于管理互联网通信中的身份和安全性。 启用 PKI 的核心技术是公钥密码术&#xff0c;这是一种依赖于使用两个相关密钥&#xff08;公钥和私钥&#xff09;的加密机制。 这两个密钥一起用于加密和解密消息。…

CM311-3_YST_晨星MSO9385_2+8_安卓9.0_TTL免费升级固件【含教程】

新魔百盒CM311-3_YST_晨星MSO9385_28_安卓9.0_TTL免费升级固件【含教程】 固件特点&#xff1a; 1、修改dns&#xff0c;三网通用&#xff1b; 2、开放原厂固件屏蔽的市场安装和u盘安装apk&#xff1b; 3、无开机广告&#xff0c;无系统更新&#xff0c;不在被强制升级&…

网站攻击技术,一篇打包带走!

大家好&#xff0c;今天给大家介绍一下&#xff0c;Web安全领域常见的一些安全问题。 1. SQL 注入 SQL注入攻击的核心在于让Web服务器执行攻击者期望的SQL语句&#xff0c;以便得到数据库中的感兴趣的数据或对数据库进行读取、修改、删除、插入等操作&#xff0c;达到其邪恶的…

分布式应用之监控平台zabbix的认识与搭建

内容预知 1.监控系统的相关知识 1.1 监控系统运用的原因 1.2 网站的可用性 1.3 市面上常用的监控系统 2.zabbix的相关知识 2.1 zabbix的概述 2.2 zabbix 是什么&#xff1f; 2.3 zabbix的监控原理 2.4 zabbix监控系统中五个常用程序 3. zabbix 服务端的部署 4. 部署…

C++ 不知图系列之基于链接表的无向图最短路径搜索

1. 前言 图的常用存储方式有 2 种&#xff1a; 邻接炬阵。 链接表。 邻接炬阵的优点和缺点都很明显。优点是简单、易理解&#xff0c;但是对于大部分图结构而言&#xff0c;都是稀疏的&#xff0c;使用矩阵存储&#xff0c;空间浪费就较大。 链接表相比较邻接矩阵存储方案…

团队的Code Review实践

高效地进行 Code Review 一直是我们想要做的事情&#xff0c;如何持续保持高效 Review 也是我们日常开发中所亟需解决的问题。 在疫情爆发之前&#xff0c;团队大多是线下一起办公。大家会聚在一起 Code Review&#xff0c;把讨论出的反馈记录在便利贴并贴在白板上。而当远程、…

Baklib|如何为你的营销计划制作Wiki页面

当你需要快速查找信息时&#xff0c;你会怎么做?很有可能&#xff0c;你会直接去谷歌——在输入你的查询之后&#xff0c;十有八九&#xff0c;搜索引擎会带你去wiki百科。wiki百科是一个巨大的在线百科全书。在这个数据库中&#xff0c;几乎所有的文章都有链接。 现在想象一…

Maven之POM介绍

POM介绍前言POM基础为什么要学习POM什么是POMSuper POMMinimal POM&#xff08;POM的最低配置&#xff09;POM特点Project Inheritance(项目继承性&#xff09;Project Aggregation(项目聚合&#xff09;Project Inheritance VS Project AggregationProject Interpolation and …

《FFmpeg Basics》中文版-00-简介

欢迎 亲爱的读者们&#xff0c; 欢迎来到这本书&#xff0c;它将使您熟悉FFmpeg项目的许多有趣的特性。下面的几个大公司都是FFmpeg使用者: Facebook&#xff0c;最大的社交网络&#xff0c;用FFmpeg技术处理用户的视频。Google Chrome&#xff0c;流行的web浏览器&#xff0…

EDI通信中常用的网络排查方法

在知行之桥EDI系统运维工作中不可避免会碰到各种网络问题&#xff0c;本文将分享一些我们运维同事常用的一些网络问题排查定位方法&#xff0c;帮助大家快速的定位原因&#xff0c;解决通信问题。 1.Ping&#xff1a; 作用&#xff1a;ping用于确定本地主机是否能与另一台主机…