腾讯云AI超级底座新升级:训练效率提升幅度达到3倍

news2025/1/17 0:06:05

大模型推动AI进入新纪元,对计算、存储、网络、数据检索及调度容错等方面提出了更高要求。在9月7日举行的2023腾讯全球数字生态大会“AI超级底座专场”上,腾讯云介绍异构计算全新产品矩阵“AI超级底座”及其新能力。

腾讯云副总裁王亚晨在开场致辞中表示,AI大模型就像是一场F1比赛,腾讯云专门设计了星脉高性能算力网络“赛道”,并自研了TiTa和TCCL网络协议作为“车载导航和道路控制系统”,共同让“HCC GPU服务器”这台马力强大的F1赛车发挥最大的算力性能,助力客户在AI大模型的竞争中遥遥领先。

图片

腾讯云全新异构计算产品矩阵“AI超级底座”亮相

随着AI应用走向全领域,模型参数发展到千亿、万亿级规模,对云计算的基础设施提出了全新的挑战。腾讯云异构计算产品总监宋丹丹表示,AI 超级底座可以从底层算力基础设施到上层应用对接提供整套完整服务,方便模型生产厂商和AI开发者快速开发、验证。

腾讯云AI超级底座具有海量算力、极致性能、灵活取用等优势,结合了腾讯云的海量多元算力、高性能网络和存储集群,并以云原生产品作为入口供开发者灵活调用。在软硬结合层,腾讯云还可以通过GPU虚拟化、容器等,以及高性能应用服务HAI给开发者提供简易的开发体验,并让底层的高性能算力无损直达开发者,真正实现“高性能易上手”。

图片

基础设施再进化,取之AI,赋能于AI

作为AIGC时代的重要核心,大模型需要庞大的算力来支撑。腾讯云高性能计算集群产品 HCC采用腾讯云星星海自研服务器,提供高性能、高带宽和低延迟的集群算力。目前,HCC已全面升级至2.0,性能、效率和稳定性实现全面提升,相比上代训练效率提升幅度达到3倍,将几十天的训练周期缩短至一周内。

此外,腾讯云还推出了性价比更高的冷存储产品、COS加速器,以及数据湖多级加速体系,可面向AIGC等多种业务场景提供多级缓存加速方案,进一步提升训练效率并降低资源成本。腾讯云存储产品总监崔剑指出,腾讯云通过提供近存储侧的一站式数据处理智能平台,为以AIGC为代表的业务提供内容处理、内容审核等服务,帮助用户挖掘数据价值,从而实现了“取之AI,助力AI”。

图片

腾讯云公网产品负责人俞圆圆指出,对于参数达到千亿、万亿级别的 AI 大模型来说,大带宽、低延时、广覆盖、少抖动的网络是实现高效训练的关键因素之一。腾讯云星脉高性能计算网络具备业界最高的3.2T 通信带宽,可为AI大模型的训练提供高速公路级别的网络通道。

图片

软硬件结合,提升极致性能

底层基础设施以外, AI大模型的落地也需要上层软件的支持。腾讯云异构计算AI研发专家工程师叶帆表示,随着集群规模的增加,无论训练还是推理对硬件性能的利用均呈现指数难度上升,需要精细的软硬件协同来提升性能。腾讯云的Taco-LLM开箱即用性能方案基于Continuous Batching、预测解码、模型量化等技术,提高吞吐的同时,也降低了客户端延迟,并全面兼容hugging face主流大语言模型,可保障复杂多变的公有云应用场景。

图片

针对GPU算力资源浪费的问题,腾讯云TencentOS高级产品架构师杜震表示,qGPU容器产品可以支持多个容器共享 GPU 卡,具备了各容器间算力、显存的精细隔离和灵活配置,将GPU的利用率提升至极致,最终帮助客户大幅节约GPU资源成本。同时,腾讯云还基于 RUE 内核全场景混部,统一调度分配 CPU、IO、网络、内存等资源,提升资源利用率,进一步降低运营成本。

图片

向量数据库加速企业AI化进程

在大模型时代,通过向量数据库将数据高效接入AI大模型,并深度挖掘数据价值,成为最重要的事。

腾讯云数据库产品副总经理罗云指出,腾讯云向量数据库同时具备的性能和规模优势,支持高达10亿级的向量检索规模,延迟则控制在毫秒级,比传统单机插件式数据库检索规模提升了10倍。同时,腾讯云向量数据库还具备百万级每秒查询(QPS)的峰值能力,经腾讯内部海量场景实践,数据接入 AI 的效率比传统方案提升10倍,运行稳定性高达99.99%。

图片

从底层到上层,腾讯云AI超级底座通过大模型高性能计算集群、计算网络以及向量数据库等大模型生态工具,助力AI大模型应用落地。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1008193.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

创建第一个MyBatis框架--保姆级教学

文章目录 前言一、创建一个空的mybatis项目二、创建一个Maven模块三、各个文件的配置四、总结 前言 在idea上创建我的第一个MyBatis框架 一、创建一个空的mybatis项目 1、new一个新的项目 2、选择最下面,创建一个空项目 3、为空项目取一个名字,位置可以自己选 4、点…

TCP 和 UDP 的 Socket 调用

在网络层,Socket 函数需要指定到底是 IPv4 还是 IPv6,分别对应设置为 AF_INET 和 AF_INET6。另外,还要指定到底是 TCP 还是 UDP。TCP 协议是基于数据流的,所以设置为 SOCK_STREAM,而 UDP 是基于数据报的,因…

java的集合进阶学习

1.集合类 集合类的特点:提供一种存储空间可变的存储模型,存储的数据容量可以随时发生改变 2.集合体系结构 3.Collection集合 Collection集合常用方法 Collection集合的遍历 4.List集合特点 LinkedList集合的特有功能 数组和链表数据结构 栈&#xff…

数据分析三剑客之Pandas

1.引入 前面一篇文章我们介绍了numpy,但numpy的特长并不是在于数据处理,而是在它能非常方便地实现科学计算,所以我们日常对数据进行处理时用的numpy情况并不是很多,我们需要处理的数据一般都是带有列标签和index索引的&#xff0…

MCU软核 1. Altera FPGA上运行8051

0. 环境 - Quartus 13 - EP4CE6E22开发板 - keil c51 - ag10kl144h(本工程兼容AGM) 下载8051源码:https://www.oreganosystems.at/products/ip-cores/8051-ip-core 1. Create Project File --> New Project Wizard 位置:E…

什么是ELK

什么是ELK ELK 并不是一个技术框架的名称,它其实是一个三位一体的技术名词,ELK 的每个字母都来自一个技术组件,分别是 Elasticsearch(简称 ES)、Logstash 和 Kibana。 三个技术组件是独立的,后两个被elast…

yolov5权重文件.pt转.bin文件

参考链接:YOLOv5学习记录(二): 模型转化及Android端部署_yolo .pt文件转未bin_Xiaoer__Lu的博客-CSDN博客 1、准备pt文件 我的目录是:C:\Users\Administrator\Desktop\driving\yolov5-mask-42-master\runs\train\exp_yolov5s\weights里的best.pt 2、p…

【hive】列转行—collect_set()/collect_list()/concat_ws()函数的使用场景

文章目录 一、collect_set()/collect_list()二、实际运用把同一分组的不同行的数据聚合成一个行用下标可以随机取某一个聚合后的中的值用‘|’分隔开使用collect_set()/collect_list()使得全局有序 一、collect_set()/collect_list() 在 Hive 中想实现按某字段分组&#xff0c…

ARM架构指令集--专用指令

四、状态寄存器专用指令 CPSR寄存器-N Z C V T为0时 为ARM状态 F为0时 为开启FIQ状态 I为0时 为开启IRQ状态 图1 图2 一开始都是SVC指令,因为在操作系统启动的时候,在做一些初始化的操作,不允许被打断 图3 复位后CPSR寄存器为0xD3--…

YOLO物体检测-系列教程4:YOLOV3项目实战1(coco图像数据集/darknet预训练模型)

1、整体项目 1.1 环境 一个有debug功能的IDE,建议PycharmPyTorch深度学习开发环境下载COCO数据集: 训练集,是很大的数据验证集,是很大的数据 1.2 数据 依次进入以下地址: 项目位置\PyTorch-YOLOv3\data\coco\imag…

elasticsearch基础篇

目录 1.mysql与elasticsearch 2.索引库操作 2.1.mapping映射属性 2.2.索引库的CRUD 2.2.1.创建索引库和映射 2.2.2.查询索引库 2.2.3.修改索引库 2.2.4.删除索引库 2.2.5.总结 3.文档操作 3.1.新增文档 3.2.查询文档 3.3.删除文档 3.4.修改文档 3.4.1.全量修改 …

QT6 C++ qDebug()输出中文乱码解决方法

1.“工具”->“选项” 2.“文本编辑器“->”Behaior(行为)“->默认编码修改为UTF-8 3.“编辑”->“Select Encoding”->选择UTF-8 4.再次编译运行,可以输出显示中文

Springboot 集成 Ehcache操作数据库显示SQL语句设置

Springboot 集成 Ehcache操作数据库显示SQL语句设置 2023-09-13 23:33:35.030 INFO 6124 --- [ task-1] o.hibernate.jpa.internal.util.LogHelper : HHH000204: Processing PersistenceUnitInfo [name: default] 2023-09-13 23:33:35.124 INFO 6124 --- [ …

24.Xaml ListView控件-----显示数据

1.运行效果 2.运行源码 a.Xaml源码 <Window x:Class="testView.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d="http://schemas.mic…

为保障小程序安全,安装SSL证书是必要的选择

随着小程序的蓬勃发展&#xff0c;用户对于安全性和隐私保护的关注也日益增加。在这样的背景下&#xff0c;安装SSL证书成为保障小程序安全的重要措施之一。本文将为您详细介绍安装SSL证书的原因及其带来的益处。 首先&#xff0c;SSL证书可以保护用户数据的安全性。通过为小程…

开源视频监控服务器Shinobi

什么是 Shinobi ? Shinobi 是用 Node.JS 编写的开源 CCTV 解决方案。采用多帐户系统、WebSocket Streams 和直接保存到 MP4 的设计。Shinobi 提供了一个基于 Web 的用户界面&#xff0c;使用户可以通过浏览器来查看和管理监控视频&#xff0c;Shinobi 支持多个品牌的摄像头和网…

【2023】数据挖掘课程设计:基于TF-IDF的文本分类

目录 一、课程设计题目 基于TF-IDF的文本分类 二、课程设计设置 1. 操作系统 2. IDE 3. python 4. 相关的库 三、课程设计目标 1. 掌握数据预处理的方法&#xff0c;对训练集数据进行预处理&#xff1b; 2. 掌握文本分类建模的方法&#xff0c;对语料库的文档进行建模…

Linux内核4.14版本——drm框架分析(14)——Atomic KMS 架构(struct drm_atomic_state)

目录 1. drm_atomic_state_alloc创建drm_atomic_state 1.1 drm_atomic_state_init 2. 各个drm object对应的state 2.1 drm_atomic_get_crtc_state 2.2 drm_atomic_get_plane_state 2.3 drm_atomic_get_connector_state 2.4 struct __drm_{object}_state 我们从前面两篇文…

excel中的引用与查找函数篇2

如下所有案例中表头均不参与范围查找内&#xff1a; 1、LOOKUP(lookup_value,lookup_vector,[result_vector])&#xff1a;在一行或者一列中查找某个值并从另一行或者列中找到同位置的值 记住&#xff1a;中括号内的参数可以不赋值&#xff0c;若在中间用逗号隔开这个参数&…

【Flink实战】Flink自定义的Source 数据源案例-并行度调整结合WebUI

&#x1f680; 作者 &#xff1a;“大数据小禅” &#x1f680; 文章简介 &#xff1a;【Flink实战】玩转Flink里面核心的Source Operator实战 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 目录导航 什么是Flink的并行度Flink自定义的Source 数据…