数据分析三剑客之Pandas

news2024/11/29 6:35:49

1.引入

前面一篇文章我们介绍了numpy,但numpy的特长并不是在于数据处理,而是在它能非常方便地实现科学计算,所以我们日常对数据进行处理时用的numpy情况并不是很多,我们需要处理的数据一般都是带有列标签和index索引的,而numpy并不支持这些,这时我们就需要pandas上场啦! 

2.WHAT?

Pandas是基于Numpy构建的库,在数据处理方面可以把它理解为numpy加强版,同时Pandas也是一项开源项目 。不同于numpy的是,pandas拥有种数据结构:SeriesDataFrame: 

下面我们就来生成一个简单的series对象来方便理解:

In [1]: from pandas import Series,DataFrame
In [2]: import pandas as pd
In [3]: data = Series([1,2,3,4],index = ['a','b','c','d'])
In [4]: data
Out[4]:
a    1
b    2
c    3
d    4
dtype: int64

Series是一种类似一维数组的数据结构,由一组数据和与之相关的index组成,这个结构一看似乎与dict字典差不多,我们知道字典是一种无序的数据结构,而pandas中的Series的数据结构不一样,它相当于定长有序的字典,并且它的index和value之间是独立的,两者的索引还是有区别的,Series的index变的,而dict字典的key值是不可变的。

下面照例生成一个简单的DataFrame对象:

In [8]: data = {'a':[1,2,3],'b':['we','you','they'],'c':['btc','eos','ae']}
In [9]: df = DataFrame(data)
In [10]: df
Out[10]:
   a     b    c
0  1    we  btc
1  2   you  eos
2  3  they   ae

DataFrame这种数据结构我们可以把它看作是一张二维表,DataFrame长得跟我们平时使用的Excel表格差不多,DataFrame的横行称为columns,竖列和Series一样称为index,DataFrame每一列可以是不同类型的值集合,所以DataFrame你也可以把它视为不同数据类型同一index的Series集合。

3.WHY?

科学计算方面numpy是优势,但在数据处理方面DataFrame就更胜一筹了,事实上DataFrame已经覆盖了一部分的数据操作了,对于数据挖掘来说,工作可大概分为读取数据-数据清洗-分析建模-结果展示:

先说说读取数据,Pandas提供强大的IO读取工具,csv格式、Excel文件、数据库等都可以非常简便地读取,对于大数据,pandas也支持大文件的分块读取;

接下来就是数据清洗,面对数据集,我们遇到最多的情况就是存在缺失值,Pandas把各种类型数据类型的缺失值统一称为NaN(这里要多说几句,None==None这个结果是true,但np.nan==np.nan这个结果是false,NaN在官方文档中定义的是float类型,有关于NaN和None的区别以及使用,有位博主已经做好整理:None vs NaN),Pandas提供许多方便快捷的方法来处理这些缺失值NaN。

最重要的分析建模阶段,Pandas自动且明确的数据对齐特性,非常方便地使新的对象可以正确地与一组标签对齐,有了这个特性,Pandas就可以非常方便地将数据集进行拆分-重组操作。

最后就是结果展示阶段了,我们都知道Matplotlib是个数据视图化的好工具,Pandas与Matplotlib搭配,不用复杂的代码,就可以生成多种多样的数据视图。

4.HOW?

Series

Series的两种生成方式:

In [19]: data = Series([222,'btc',234,'eos'])
In [20]: data
Out[20]:
0    222
1    btc
2    234
3    eos
dtype: object

虽然我们在生成的时候没有设置index值,但Series还是会自动帮我们生成index,这种方式生成的Series结构跟list列表差不多,可以把这种形式的Series理解为竖起来的list列表。

In [21]: data = Series([1,2,3,4],index = ['a','b','c','d'])
In [22]: data
Out[22]:
a    1
b    2
c    3
d    4
dtype: int64

这种形式的Series可以理解为numpy的array外面披了一件index的马甲,所以array的相关操作,Series同样也是支持的。结构非常相似的dict字典同样也是可以转化为Series格式的:

In [29]: dic = {'a':1,'b':2,'c':'as'}
In [30]: dicSeries = Series(dic)

查看Series的相关信息:

In [32]: data.index
Out[32]: Index(['a', 'b', 'c', 'd'], dtype='object')

In [33]: data.values
Out[33]: array([1, 2, 3, 4], dtype=int64)

In [35]: 'a' in data    #in方法默认判断的是index值
Out[35]: True

Series的NaN生成:

In [46]: index1 = [ 'a','b','c','d']
In [47]: dic = {'b':1,'c':1,'d':1}
In [48]: data2 = Series(dic,index=index1)
In [49]: data2
Out[49]:
a    NaN
b    1.0
c    1.0
d    1.0
dtype: float64

从这里我们可以看出Series的生成依据的是index值,index‘a’在字典dic的key中并不存在,Series自然也找不到’a’的对应value值,这种情况下Pandas就会自动生成NaN(not a number)来填补缺失值,这里还有个有趣的现象,原本dtype是int类型,生成NaN后就变成了float类型了,因为NaN的官方定义就是float类型

NaN的相关查询:

In [58]: data2.isnull()
Out[58]:
a     True
b    False
c    False
d    False
dtype: bool

In [59]: data2.notnull()
Out[59]:
a    False
b     True
c     True
d     True
dtype: bool

In [60]: data2[data2.isnull()==True]    #嵌套查询NaN
Out[60]:
a   NaN
dtype: float64

In [64]: data2.count()    #统计非NaN个数
Out[64]: 3

切记切记,查询NaN值切记不要使用np.nan==np.nan这种形式来作为判断条件,结果永远是False,==是用作值判断的,而NaN并没有值,如果你不想使用上方的判断方法,你可以使用is作为判断方法,is对象引用判断,np.nan is np.nan,结果就是你要的True。

Series自动对齐:

In [72]: data1
Out[72]:
a      1
asd    1
b      1
dtype: int64

In [73]: data
Out[73]:
a    1
b    2
c    3
d    4
dtype: int64

In [74]: data+data1
Out[74]:
a      2.0
asd    NaN
b      3.0
c      NaN
d      NaN
dtype: float64

从上面两个Series中不难看出各自的index所处位置并不完全相同,这时Series的自动对齐特性就发挥作用了,在算术运算中,Series会自动寻找匹配的index值进行运算,如果index不存在匹配则自动赋予NaN,值得注意的是,任何数+NaN=NaN,你可以把NaN理解为吸收一切的黑洞。

Series的name属性:

In [84]: data.index.name = 'abc'
In [85]: data.name = 'test'
In [86]: data
Out[86]:
abc
a    1
b    2
c    3
d    4
Name: test, dtype: int64

Series对象本身及其索引index都有一个name属性,name属性主要发挥作用是在DataFrame中,当我们把一个Series对象放进DataFrame中,新的列将根据我们的name属性对该列进行命名,如果我们没有给Series命名,DataFrame则会自动帮我们命名为0

5.DataFrame

DataFrame的生成:

In [87]:  data = {'name': ['BTC', 'ETH', 'EOS'], 'price':[50000, 4000, 150]}
In [88]: data = DataFrame(data)
In [89]: data
Out[89]:
  name  price
0  BTC  50000
1  ETH   4000
2  EOS    150

DataFrame的生成与Series差不多,你可以自己指定index,也可不指定,DataFrame会自动帮你补上。

查看DataFrame的相关信息:

In [95]: data.index
Out[95]: RangeIndex(start=0, stop=3, step=1)

In [96]: data.values
Out[96]:
array([['BTC', 50000],
       ['ETH', 4000],
       ['EOS', 150]], dtype=object)

In [97]: data.columns    #DataFrame的列标签
Out[97]: Index(['name', 'price'], dtype='object')

DataFrame的索引:

In [92]: data.name
Out[92]:
0    BTC
1    ETH
2    EOS
Name: name, dtype: object

In [93]: data['name']
Out[93]:
0    BTC
1    ETH
2    EOS
Name: name, dtype: object

In [94]: data.iloc[1]    #loc['name']查询的是行标签
Out[94]:
name      ETH
price    4000
Name: 1, dtype: object

其实行索引,除了iloc,loc还有个ixix既可以进行行标签索引,也可以进行行号索引,但这也大大增加了它的不确定性,有时会出现一些奇怪的问题,所以pandas在0.20.0版本的时候就把ix给弃用了。

6.DataFrame的常用操作

简单地增加行、列:

In [105]: data['type'] = 'token'    #增加列

In [106]: data
Out[106]:
  name  price   type
0  BTC  50000  token
1  ETH   4000  token
2  EOS    150  token
In [109]: data.loc['3'] = ['ae',200,'token']    #增加行

In [110]: data
Out[110]:
  name  price   type
0  BTC  50000  token
1  ETH   4000  token
2  EOS    150  token
3   ae    200  token

删除行、列操作:

In [117]: del data['type']    #删除列

In [118]: data
Out[118]:
  name  price
0  BTC  50000
1  ETH   4000
2  EOS    150
3   ae    200
In [120]: data.drop([2])    #删除行
Out[120]:
  name  price
0  BTC  50000
1  ETH   4000
3   ae    200

In [121]: data
Out[121]:
  name  price
0  BTC  50000
1  ETH   4000
2  EOS    150
3   ae    200

这里需要注意的是,使用drop()方法返回的是Copy而不是视图,要想真正在原数据里删除行,就要设置inplace=True

In [125]: data.drop([2],inplace=True)

In [126]: data
Out[126]:
  name  price
0  BTC  50000
1  ETH   4000
3   ae    200

设置某一列为index:

In [131]: data.set_index(['name'],inplace=True)

In [132]: data
Out[132]:
      price
name
BTC   50000
ETH    4000
ae      200

In [133]: data.reset_index(inplace=True)    #将index返回回dataframe中

In [134]: data
Out[134]:
  name  price
0  BTC  50000
1  ETH   4000
2   ae    200

处理缺失值:

In [149]: data
Out[149]:
  name    price
0  BTC  50000.0
1  ETH   4000.0
2   ae    200.0
3  eos      NaN

In [150]: data.dropna()    #丢弃含有缺失值的行
Out[150]:
  name    price
0  BTC  50000.0
1  ETH   4000.0
2   ae    200.0

In [151]: data.fillna(0)    #填充缺失值数据为0
Out[151]:
  name    price
0  BTC  50000.0
1  ETH   4000.0
2   ae    200.0
3  eos      0.0

还是需要注意:这些方法返回的是copy而不是视图,如果想在原数据上改变,别忘了inplace=True

数据合并:

In [160]: data
Out[160]:
  name    price
0  BTC  50000.0
1  ETH   4000.0
2   ae    200.0
3  eos      NaN

In [161]: data1
Out[161]:
  name  other
0  BTC  50000
1  BTC   4000
2  EOS    150

In [162]: pd.merge(data,data1,on='name',how='left')    #以name为key进行左连接
Out[162]:
  name    price    other
0  BTC  50000.0  50000.0
1  BTC  50000.0   4000.0
2  ETH   4000.0      NaN
3   ae    200.0      NaN
4  eos      NaN      NaN

平时进行数据合并操作,更多的会出一种情况,那就是出现重复值,DataFrame也为我们提供了简便的方法:

data.drop_duplicates(inplace=True)

数据的简单保存与读取:

In [165]: data.to_csv('test.csv')

In [166]: pd.read_csv('test.csv')
Out[166]:
   Unnamed: 0 name    price
0           0  BTC  50000.0
1           1  ETH   4000.0
2           2   ae    200.0
3           3  eos      NaN

为什么会出现这种情况呢,从头看到尾的同学可能就看出来了,增加第三行时,我用的是loc[‘3’]行标签来增加的,而read_csv方法是默认index是从0开始增长的,此时只需要我们设置下index参数就ok了:

In [167]: data.to_csv('test.csv',index=None)    #不保存行索引
In [168]: pd.read_csv('test.csv')
Out[168]:
  name    price
0  BTC  50000.0
1  ETH   4000.0
2   ae    200.0
3  eos      NaN

其他的还有header参数, 这些参数都是我们在保存数据时需要注意的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1008189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MCU软核 1. Altera FPGA上运行8051

0. 环境 - Quartus 13 - EP4CE6E22开发板 - keil c51 - ag10kl144h(本工程兼容AGM) 下载8051源码:https://www.oreganosystems.at/products/ip-cores/8051-ip-core 1. Create Project File --> New Project Wizard 位置:E…

什么是ELK

什么是ELK ELK 并不是一个技术框架的名称,它其实是一个三位一体的技术名词,ELK 的每个字母都来自一个技术组件,分别是 Elasticsearch(简称 ES)、Logstash 和 Kibana。 三个技术组件是独立的,后两个被elast…

yolov5权重文件.pt转.bin文件

参考链接:YOLOv5学习记录(二): 模型转化及Android端部署_yolo .pt文件转未bin_Xiaoer__Lu的博客-CSDN博客 1、准备pt文件 我的目录是:C:\Users\Administrator\Desktop\driving\yolov5-mask-42-master\runs\train\exp_yolov5s\weights里的best.pt 2、p…

【hive】列转行—collect_set()/collect_list()/concat_ws()函数的使用场景

文章目录 一、collect_set()/collect_list()二、实际运用把同一分组的不同行的数据聚合成一个行用下标可以随机取某一个聚合后的中的值用‘|’分隔开使用collect_set()/collect_list()使得全局有序 一、collect_set()/collect_list() 在 Hive 中想实现按某字段分组&#xff0c…

ARM架构指令集--专用指令

四、状态寄存器专用指令 CPSR寄存器-N Z C V T为0时 为ARM状态 F为0时 为开启FIQ状态 I为0时 为开启IRQ状态 图1 图2 一开始都是SVC指令,因为在操作系统启动的时候,在做一些初始化的操作,不允许被打断 图3 复位后CPSR寄存器为0xD3--…

YOLO物体检测-系列教程4:YOLOV3项目实战1(coco图像数据集/darknet预训练模型)

1、整体项目 1.1 环境 一个有debug功能的IDE,建议PycharmPyTorch深度学习开发环境下载COCO数据集: 训练集,是很大的数据验证集,是很大的数据 1.2 数据 依次进入以下地址: 项目位置\PyTorch-YOLOv3\data\coco\imag…

elasticsearch基础篇

目录 1.mysql与elasticsearch 2.索引库操作 2.1.mapping映射属性 2.2.索引库的CRUD 2.2.1.创建索引库和映射 2.2.2.查询索引库 2.2.3.修改索引库 2.2.4.删除索引库 2.2.5.总结 3.文档操作 3.1.新增文档 3.2.查询文档 3.3.删除文档 3.4.修改文档 3.4.1.全量修改 …

QT6 C++ qDebug()输出中文乱码解决方法

1.“工具”->“选项” 2.“文本编辑器“->”Behaior(行为)“->默认编码修改为UTF-8 3.“编辑”->“Select Encoding”->选择UTF-8 4.再次编译运行,可以输出显示中文

Springboot 集成 Ehcache操作数据库显示SQL语句设置

Springboot 集成 Ehcache操作数据库显示SQL语句设置 2023-09-13 23:33:35.030 INFO 6124 --- [ task-1] o.hibernate.jpa.internal.util.LogHelper : HHH000204: Processing PersistenceUnitInfo [name: default] 2023-09-13 23:33:35.124 INFO 6124 --- [ …

24.Xaml ListView控件-----显示数据

1.运行效果 2.运行源码 a.Xaml源码 <Window x:Class="testView.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d="http://schemas.mic…

为保障小程序安全,安装SSL证书是必要的选择

随着小程序的蓬勃发展&#xff0c;用户对于安全性和隐私保护的关注也日益增加。在这样的背景下&#xff0c;安装SSL证书成为保障小程序安全的重要措施之一。本文将为您详细介绍安装SSL证书的原因及其带来的益处。 首先&#xff0c;SSL证书可以保护用户数据的安全性。通过为小程…

开源视频监控服务器Shinobi

什么是 Shinobi ? Shinobi 是用 Node.JS 编写的开源 CCTV 解决方案。采用多帐户系统、WebSocket Streams 和直接保存到 MP4 的设计。Shinobi 提供了一个基于 Web 的用户界面&#xff0c;使用户可以通过浏览器来查看和管理监控视频&#xff0c;Shinobi 支持多个品牌的摄像头和网…

【2023】数据挖掘课程设计:基于TF-IDF的文本分类

目录 一、课程设计题目 基于TF-IDF的文本分类 二、课程设计设置 1. 操作系统 2. IDE 3. python 4. 相关的库 三、课程设计目标 1. 掌握数据预处理的方法&#xff0c;对训练集数据进行预处理&#xff1b; 2. 掌握文本分类建模的方法&#xff0c;对语料库的文档进行建模…

Linux内核4.14版本——drm框架分析(14)——Atomic KMS 架构(struct drm_atomic_state)

目录 1. drm_atomic_state_alloc创建drm_atomic_state 1.1 drm_atomic_state_init 2. 各个drm object对应的state 2.1 drm_atomic_get_crtc_state 2.2 drm_atomic_get_plane_state 2.3 drm_atomic_get_connector_state 2.4 struct __drm_{object}_state 我们从前面两篇文…

excel中的引用与查找函数篇2

如下所有案例中表头均不参与范围查找内&#xff1a; 1、LOOKUP(lookup_value,lookup_vector,[result_vector])&#xff1a;在一行或者一列中查找某个值并从另一行或者列中找到同位置的值 记住&#xff1a;中括号内的参数可以不赋值&#xff0c;若在中间用逗号隔开这个参数&…

【Flink实战】Flink自定义的Source 数据源案例-并行度调整结合WebUI

&#x1f680; 作者 &#xff1a;“大数据小禅” &#x1f680; 文章简介 &#xff1a;【Flink实战】玩转Flink里面核心的Source Operator实战 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 目录导航 什么是Flink的并行度Flink自定义的Source 数据…

阿里云通义千问大模型正式开放;玩10次ChatGPT就要消耗1升水

&#x1f989; AI新闻 &#x1f680; 阿里云通义千问大模型正式开放&#xff0c;已有超20万企业申请接入测试 摘要&#xff1a;阿里云通义千问大模型已经通过备案并向公众开放。用户可以登录官网体验&#xff0c;企业用户可以通过阿里云调用API。阿里云通义千问在一个月的邀测…

《确保安全:PostgreSQL安全配置与最佳实践》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

go并发处理业务

引言 实际上&#xff0c;在服务端程序开发和爬虫程序开发时&#xff0c;我们的大多数业务都是IO密集型业务&#xff0c;什么是IO密集型业务&#xff0c;通俗地说就是CPU运行时间只占整个业务执行时间的一小部分&#xff0c;而剩余的大部分时间都在等待IO操作。 IO操作包括htt…

uniapp 触底加载

方式一 onReachBottomDistance 缺点&#xff1a;需要整个页面滑动&#xff0c;局部滑动触发不了 { // pages.json // 路由下增加 onReachBottomDistance "path": "detailed/detailed","style": {"navigationBarTitleText": "收…