NLP机器翻译全景:从基本原理到技术实战全解析

news2025/1/19 20:41:58

目录

  • 一、机器翻译简介
    • 1. 什么是机器翻译 (MT)?
    • 2. 源语言和目标语言
    • 3. 翻译模型
    • 4. 上下文的重要性
  • 二、基于规则的机器翻译 (RBMT)
    • 1. 规则的制定
    • 2. 词典和词汇选择
    • 3. 限制与挑战
    • 4. PyTorch实现
  • 三、基于统计的机器翻译 (SMT)
    • 1. 数据驱动
    • 2. 短语对齐
    • 3. 评分和选择
    • 4. PyTorch实现
  • 四、基于神经网络的机器翻译
    • 1. Encoder-Decoder结构
    • 2. Attention机制
    • 3. 词嵌入
    • 4. PyTorch实现
  • 五、评价和评估方法
    • 1. BLEU Score
    • 2. METEOR
    • 3. ROUGE
    • 4. TER
    • 5. 人工评估

机器翻译是使计算机能够将一种语言转化为另一种语言的技术领域。本文从简介、基于规则、统计和神经网络的方法入手,深入解析了各种机器翻译策略。同时,详细探讨了评估机器翻译性能的多种标准和工具,包括BLEU、METEOR等,以确保翻译的准确性和质量。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

file

一、机器翻译简介

机器翻译,作为自然语言处理的一个核心领域,一直都是研究者们关注的焦点。其目标是实现计算机自动将一种语言翻译成另一种语言,而不需要人类的参与。

1. 什么是机器翻译 (MT)?

file
机器翻译(MT)是一种自动将源语言文本翻译成目标语言的技术。它使用特定的算法和模型,尝试在不同语言之间实现最佳的语义映射。

示例: 当你输入"Hello, world!“到Google翻译,并将其从英语翻译成法语,你会得到"Bonjour le monde!”。这就是机器翻译的一个简单示例。

2. 源语言和目标语言

  • 源语言: 你想要翻译的原始文本的语言。

示例: 在前面的例子中,"Hello, world!"的语言,即英语,就是源语言。

  • 目标语言: 你想要将源语言文本翻译成的语言。

示例: 在上述示例中,法语是目标语言。

3. 翻译模型

机器翻译的核心是翻译模型,它可以基于规则、基于统计或基于神经网络。这些模型都试图找到最佳的翻译,但它们的工作原理和侧重点有所不同。

示例: 一个基于规则的翻译模型可能会有一个词典来查找单词的直接对应关系。所以,它可能会将英文的"cat"直接翻译成法文的"chat"。而一个基于统计的模型可能会考虑语料库中的短语和句子的出现频率,来判断"cat"在某个上下文中是否应该翻译成"chat"。

4. 上下文的重要性

在机器翻译中,单独的单词翻译通常是不够的。上下文对于获得准确翻译至关重要。一些词在不同的上下文中可能有不同的含义和翻译。

示例: 英文单词"bank"可以指"河岸"也可以指"银行"。如果上下文中提到了"money",那么正确的翻译可能是"银行"。而如果上下文中提到了"river",则"bank"应该被翻译为"河岸"。

以上内容提供了机器翻译的一个简要介绍。从定义到各种细节,每一部分都是为了帮助读者更好地理解这一复杂但令人兴奋的技术领域。


二、基于规则的机器翻译 (RBMT)

file
基于规则的机器翻译(RBMT)是一种利用语言学规则将源语言文本转换为目标语言文本的技术。这些规则通常由语言学家手工编写,覆盖了语法、词汇和其他语言相关的特性。

1. 规则的制定

在RBMT中,语言学家需要为源语言和目标语言编写大量的转换规则。这些规则描述了如何根据源语言的语法结构将其转换为目标语言的语法结构。

示例: 在英法翻译中,英文的形容词通常位于名词之前,而法语的形容词则通常位于名词之后。因此,规则可能会指示将"red apple"翻译为"pomme rouge"。

2. 词典和词汇选择

除了语法转换规则,RBMT还依赖于详细的双语词典。这些词典包含了源语言和目标语言之间的单词和短语的对应关系。

示例: 词典可能会指出英文单词"book"可以翻译为法文的"livre"。

3. 限制与挑战

尽管RBMT在某些领域和应用中可以提供相对准确的翻译,但它也面临着一些限制。规则的数量可能会变得非常庞大,难以维护;并且,对于某些复杂和歧义的句子,规则可能无法提供准确的翻译。

示例: “I read books on the bank.” 这句话中的"bank"是指"河岸"还是"银行"?没有上下文,基于规则的翻译系统可能会难以做出准确的选择。

4. PyTorch实现

虽然现代的机器翻译系统很少完全依赖于RBMT,但我们可以简单地使用PyTorch来模拟一个简化版的RBMT系统。

import torch

# 假设我们已经有了一个英法词典
dictionary = {
    "red": "rouge",
    "apple": "pomme"
}

def rule_based_translation(sentence: str) -> str:
    translated_words = []
    for word in sentence.split():
        translated_words.append(dictionary.get(word, word))
    return ' '.join(translated_words)

# 输入输出示例
sentence = "red apple"
print(rule_based_translation(sentence))  # 输出: rouge pomme

在这个简单的例子中,我们定义了一个基本的英法词典,并创建了一个函数来执行基于规则的翻译。这只是一个非常简化的示例,真实的RBMT系统将涉及更复杂的语法和结构转换规则。


三、基于统计的机器翻译 (SMT)

file
基于统计的机器翻译 (SMT) 利用统计模型从大量双语文本数据中学习如何将源语言翻译为目标语言。与依赖语言学家手工编写规则的RBMT不同,SMT自动从数据中学习翻译规则和模式。

1. 数据驱动

SMT系统通常从双语语料库(包含源语言文本和其对应的目标语言翻译)中学习。通过分析成千上万的句子对,系统学会了词语、短语和句子的最有可能的翻译。

示例: 如果在许多不同的句子对中,“cat”经常被翻译为“chat”,系统将学习到这种对应关系。

2. 短语对齐

SMT通常使用所谓的“短语表”,这是从双语语料库中自动提取的短语对齐的列表。

示例: 系统可能会从句子对中学习到"take a break"对应于法文中的"prendre une pause"。

3. 评分和选择

SMT使用多个统计模型来评估和选择最佳的翻译。这包括语言模型(评估目标语言翻译的流畅性)和翻译模型(评估翻译的准确性)。

示例: 在翻译"apple pie"时,系统可能会生成多个候选翻译,然后选择评分最高的那个。

4. PyTorch实现

完整的SMT系统非常复杂,涉及多个组件和复杂的模型。但为了说明,我们可以使用PyTorch创建一个简化的基于统计的词对齐模型:

import torch
import torch.nn as nn
import torch.optim as optim

# 假设我们有一些双语句子对数据
source_sentences = ["apple", "red fruit"]
target_sentences = ["pomme", "fruit rouge"]

# 将句子转换为单词索引
source_vocab = {"apple": 0, "red": 1, "fruit": 2}
target_vocab = {"pomme": 0, "fruit": 1, "rouge": 2}
source_indices = [[source_vocab[word] for word in sentence.split()] for sentence in source_sentences]
target_indices = [[target_vocab[word] for word in sentence.split()] for sentence in target_sentences]

# 简单的对齐模型
class AlignmentModel(nn.Module):
    def __init__(self, source_vocab_size, target_vocab_size, embedding_dim=8):
        super(AlignmentModel, self).__init__()
        self.source_embedding = nn.Embedding(source_vocab_size, embedding_dim)
        self.target_embedding = nn.Embedding(target_vocab_size, embedding_dim)
        self.alignment = nn.Linear(embedding_dim, embedding_dim, bias=False)

    def forward(self, source, target):
        source_embed = self.source_embedding(source)
        target_embed = self.target_embedding(target)
        scores = torch.matmul(source_embed, self.alignment(target_embed).transpose(1, 2))
        return scores

model = AlignmentModel(len(source_vocab), len(target_vocab))
criterion = nn.CosineEmbeddingLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
for epoch in range(1000):
    total_loss = 0
    for src, tgt in zip(source_indices, target_indices):
        src = torch.LongTensor(src)
        tgt = torch.LongTensor(tgt)
        scores = model(src.unsqueeze(0), tgt.unsqueeze(0))
        loss = criterion(scores, torch.ones_like(scores), torch.tensor(1.0))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_loss += loss.item()
    if epoch % 100 == 0:
        print(f"Epoch {epoch}, Loss: {total_loss}")

# 输入: apple
# 输出: pomme (根据得分选择最佳匹配的词)

此代码为一个简单的词对齐模型,它试图学习源词和目标词之间的对齐关系。这只是SMT的冰山一角,完整的系统会涉及句子级别的对齐、短语提取、多个统计模型等。


四、基于神经网络的机器翻译

file
基于神经网络的机器翻译(NMT)使用深度学习技术,特别是递归神经网络(RNN)、长短时记忆网络(LSTM)或Transformer结构,以端到端的方式进行翻译。它直接从源语言到目标语言的句子或序列进行映射,不需要复杂的特性工程或中间步骤。

1. Encoder-Decoder结构

NMT的核心是Encoder-Decoder结构。Encoder将源语句编码为一个固定大小的向量,而Decoder将这个向量解码为目标语句。

示例: 在将英文句子 “I am learning” 翻译成法文 “Je suis en train d’apprendre” 时,Encoder首先将英文句子转换为一个向量,然后Decoder使用这个向量来生成法文句子。

2. Attention机制

Attention机制允许模型在解码时“关注”源句子中的不同部分。这使得翻译更加准确,尤其是对于长句子。

示例: 在翻译 “I am learning to translate with neural networks” 时,当模型生成 “réseaux”(网络)这个词时,它可能会特别关注源句中的 “networks”。

3. 词嵌入

词嵌入是将单词转换为向量的技术,这些向量捕捉单词的语义信息。NMT模型通常使用预训练的词嵌入,如Word2Vec或GloVe,但也可以在训练过程中学习词嵌入。

示例: “king” 和 “queen” 的向量可能会在向量空间中很接近,因为它们都是关于皇室的。

4. PyTorch实现

以下是一个简单的基于LSTM和Attention的NMT模型实现示例:

import torch
import torch.nn as nn
import torch.optim as optim

# 为简化,定义一个小的词汇表和数据
source_vocab = {"<PAD>": 0, "<SOS>": 1, "<EOS>": 2, "I": 3, "am": 4, "learning": 5}
target_vocab = {"<PAD>": 0, "<SOS>": 1, "<EOS>": 2, "Je": 3, "suis": 4, "apprenant": 5}
source_sentences = [["<SOS>", "I", "am", "learning", "<EOS>"]]
target_sentences = [["<SOS>", "Je", "suis", "apprenant", "<EOS>"]]

# 参数
embedding_dim = 256
hidden_dim = 512
vocab_size = len(source_vocab)
target_vocab_size = len(target_vocab)

# Encoder
class Encoder(nn.Module):
    def __init__(self):
        super(Encoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)

    def forward(self, x):
        x = self.embedding(x)
        outputs, (hidden, cell) = self.lstm(x)
        return outputs, (hidden, cell)

# Attention and Decoder
class DecoderWithAttention(nn.Module):
    def __init__(self):
        super(DecoderWithAttention, self).__init__()
        self.embedding = nn.Embedding(target_vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim + hidden_dim, hidden_dim, batch_first=True)
        self.attention = nn.Linear(hidden_dim + hidden_dim, 1)
        self.fc = nn.Linear(hidden_dim, target_vocab_size)

    def forward(self, x, encoder_outputs, hidden, cell):
        x = self.embedding(x)
        seq_length = encoder_outputs.shape[1]
        hidden_repeat = hidden.repeat(seq_length, 1, 1).permute(1, 0, 2)
        attention_weights = torch.tanh(self.attention(torch.cat((encoder_outputs, hidden_repeat), dim=2)))
        attention_weights = torch.softmax(attention_weights, dim=1)
        context = torch.sum(attention_weights * encoder_outputs, dim=1).unsqueeze(1)
        x = torch.cat((x, context), dim=2)
        outputs, (hidden, cell) = self.lstm(x, (hidden, cell))
        x = self.fc(outputs)
        return x, hidden, cell

# Training loop
encoder = Encoder()
decoder = DecoderWithAttention()
optimizer = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()), lr=0.001)
criterion = nn.CrossEntropyLoss(ignore_index=0

)

for epoch in range(1000):
    for src, tgt in zip(source_sentences, target_sentences):
        src = torch.tensor([source_vocab[word] for word in src]).unsqueeze(0)
        tgt = torch.tensor([target_vocab[word] for word in tgt]).unsqueeze(0)
        optimizer.zero_grad()
        encoder_outputs, (hidden, cell) = encoder(src)
        decoder_input = tgt[:, :-1]
        decoder_output, _, _ = decoder(decoder_input, encoder_outputs, hidden, cell)
        loss = criterion(decoder_output.squeeze(1), tgt[:, 1:].squeeze(1))
        loss.backward()
        optimizer.step()
    if epoch % 100 == 0:
        print(f"Epoch {epoch}, Loss: {loss.item()}")

# 输入: <SOS> I am learning <EOS>
# 输出: <SOS> Je suis apprenant <EOS>

此代码展示了一个基于注意力的NMT模型,从源语句到目标语句的映射。这只是NMT的基础,更高级的模型如Transformer会有更多的细节和技术要点。


五、评价和评估方法

机器翻译的评价是衡量模型性能的关键部分。准确、流畅和自然的翻译输出是我们的目标,但如何量化这些目标并确定模型的质量呢?

1. BLEU Score

BLEU(Bilingual Evaluation Understudy)分数是机器翻译中最常用的自动评估方法。它通过比较机器翻译输出和多个参考翻译之间的n-gram重叠来工作。

示例: 假设机器的输出是 “the cat is on the mat”,而参考输出是 “the cat is sitting on the mat”。1-gram精度是5/6,2-gram精度是4/5,以此类推。BLEU分数会考虑到这些各级的精度。

2. METEOR

METEOR(Metric for Evaluation of Translation with Explicit ORdering)是另一个评估机器翻译的方法,它考虑了同义词匹配、词干匹配以及词序。

示例: 如果机器输出是 “the pet is on the rug”,而参考翻译是 “the cat is on the mat”,尽管有些词不完全匹配,但METEOR会认为"pet"和"cat"、"rug"和"mat"之间有某种相似性。

3. ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) 通常用于评估自动文摘,但也可以用于机器翻译。它考虑了机器翻译输出和参考翻译之间的n-gram的召回率。

示例: 对于同样的句子 “the cat is on the mat” 和 “the cat is sitting on the mat”,ROUGE-1召回率为6/7。

4. TER

TER (Translation Edit Rate) 衡量了将机器翻译输出转换为参考翻译所需的最少编辑次数(如插入、删除、替换等)。

示例: 对于 “the cat sat on the mat” 和 “the cat is sitting on the mat”,TER是1/7,因为需要添加一个"is"。

5. 人工评估

尽管自动评估方法提供了快速的反馈,但人工评估仍然是确保翻译质量的金标准。评估者通常会根据准确性、流畅性和是否忠实于源文本来评分。

示例: 一个句子可能获得满分的BLEU分数,但如果其翻译内容与源内容的意图不符,或者读起来不自然,那么人类评估者可能会给予较低的评分。

总的来说,评估机器翻译的性能是一个多方面的任务,涉及到多种工具和方法。理想情况下,研究者和开发者会结合多种评估方法,以获得对模型性能的全面了解。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1007650.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

App Inventor 2 实现Ascii码转换(Ascii编码与解码)

之前有同学问&#xff0c;App Inventor 2 字符及Ascii码如何进行转换&#xff0c;经过调查&#xff0c;其原生的组件和内置块无法完成这个功能&#xff0c;网上也有利用Web客户端组件执行js代码来进行转换&#xff0c;不过逻辑稍复杂效率还不高。这里介绍一个拓展可以非常方便的…

【算法系列 | 8】深入解析查找算法之—二分查找

序言 心若有阳光&#xff0c;你便会看见这个世界有那么多美好值得期待和向往。 决定开一个算法专栏&#xff0c;希望能帮助大家很好的了解算法。主要深入解析每个算法&#xff0c;从概念到示例。 我们一起努力&#xff0c;成为更好的自己&#xff01; 今天第8讲&#xff0c;讲一…

CrossOver 23 正式发布:可在 Mac 上运行部分 DX12 游戏

CodeWeivers 公司于今年 6 月发布了 CrossOver 23 测试版&#xff0c;重点添加了对 DirectX 12 支持&#xff0c;从而在 Mac 上更好地模拟运行 Windows 游戏。 该公司今天发布新闻稿&#xff0c;表示正式发布 CrossOver 23 稳定版&#xff0c;在诸多新增功能中&#xff0c;最值…

【经典小练习】JavaSE—拷贝文件夹

&#x1f38a;专栏【Java小练习】 &#x1f354;喜欢的诗句&#xff1a;天行健&#xff0c;君子以自强不息。 &#x1f386;音乐分享【如愿】 &#x1f384;欢迎并且感谢大家指出小吉的问题&#x1f970; 文章目录 &#x1f384;效果&#x1f33a;代码&#x1f6f8;讲解&#x…

Java学习之--类和对象

&#x1f495;粗缯大布裹生涯&#xff0c;腹有诗书气自华&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;Java学习之--类和对象 类和对象 类的实例化&#xff1a; 1.什么叫做类的实例化 利用类创建一个具体的对象就叫做类的实例化&#xff01; 当我们创建了…

预算有限但想改善客户服务?教你几招轻松解决~

这里有一个常见的误解&#xff1a;只有大公司需要客户服务。事实是&#xff0c;无论行业规模大小&#xff0c;出色的客户服务对每个企业都至关重要。事实上&#xff0c;企业规模越小&#xff0c;客户服务就越重要&#xff0c;因为他们无法承受失去客户的后果。 不仅如此&#…

连nil切片和空切片一不一样都不清楚?那BAT面试官只好让你回去等通知了。

连nil切片和空切片一不一样都不清楚&#xff1f;那BAT面试官只好让你回去等通知了。 问题 package mainimport ("fmt""reflect""unsafe" )func main() {var s1 []ints2 : make([]int,0)s4 : make([]int,0)fmt.Printf("s1 pointer:%v, s2 p…

【UE虚幻引擎】UE源码版编译、Andorid配置、打包

首先是要下载源码版的UE&#xff0c;我这里下载的是5.2.1 首先要安装Git 在你准备放代码的文件夹下右键点击Git Bash Here 然后可以直接git clone https://github.com/EpicGames/UnrealEngine 不行的话可以直接去官方的Github上下载Zip压缩包后解压 运行里面的Setup.bat&a…

浅谈C++|STL之vector篇

一.vector的基本概念 vector是C标准库中的一种动态数组容器&#xff0c;提供了动态大小的数组功能&#xff0c;能够在运行时根据需要自动扩展和收缩。vector以连续的内存块存储元素&#xff0c;可以快速访问和修改任意位置的元素。 以下是vector的基本概念和特点&#xff1a; 动…

第27章_瑞萨MCU零基础入门系列教程之freeRTOS实验

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id728461040949 配套资料获取&#xff1a;https://renesas-docs.100ask.net 瑞萨MCU零基础入门系列教程汇总&#xff1a; ht…

Anaconda下Jupyter Notebook执行OpenCV中cv2.imshow()报错(错误码为1272)网上解法汇总记录和最终处理方式

零、我设备的相关信息 Python 3.8.8Anaconda3 2021.05查询匹配python3.8.*的OpenCV匹配版本为&#xff1a;4.1.* — 4.2.*&#xff0c;我最后安装4.2.0.32版本如下我记录了 “从发现问题&#xff0c;到不断试错&#xff0c;最后解决问题” 的完整过程&#xff0c;以备自己复盘…

二叉树顺序存储结构

目录 1.二叉树顺序存储结构 2.堆的概念及结构 3.堆的相关接口实现 3.1 堆的插入及向上调整算法 3.1.1 向上调整算法 3.1.2 堆的插入 3.2 堆的删除及向下调整算法 3.2.1 向下调整算法 3.2.2 堆的删除 3.3 其它接口和代码实现 4.建堆或数组调堆的两种方式及复杂度分析…

SpringCloud Eureka搭建会员中心服务提供方-集群

&#x1f600;前言 本篇博文是关于SpringCloud Eureka搭建会员中心服务提供方-集群&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章可以帮助到大家&#xff0c;您…

【Transformer系列】深入浅出理解Attention和Self-Attention机制

一、参考资料 课件&#xff1a;10_Transformer_1.pdf 视频&#xff1a;Transformer模型(1/2): 剥离RNN&#xff0c;保留Attention 二、Attention without RNN Attention模型可以看到全局的信息。 本章节以 Seq2Seq&#xff08; (encoder decoder)&#xff09; 模型为例&…

算法通关18关 | 回溯模板如何解决复原IP问题

18关的前几篇文章看过之后&#xff0c;对回溯的模板问题基本解题思路就知道了&#xff0c;就是固定的for循环问题&#xff0c;外层for循环控制横向&#xff0c;递归控制纵向&#xff0c;还要考虑撤销操作和元素是否能被重复利用问题&#xff0c;重复利用的情景较少&#xff0c;…

【物联网】简要解释RTK(Real-Time Kinematic)>>实时动态差分定位

引言&#xff1a; RTK&#xff08;Real-Time Kinematic&#xff09;技术是一种基于差分GPS的高精度定位技术&#xff0c;它通过实时通信和数据处理&#xff0c;能够提供厘米级甚至亚米级的定位精度。RTK技术在许多领域都得到了广泛应用&#xff0c;如测绘、航空航天、农业等。本…

C++ 内存模型 Memory Model

CPU 现在CPU都是多核结构&#xff0c;每个核心都有自己的一级缓存&#xff0c;二级缓存&#xff0c;以及共享的三级缓存。如下图&#xff0c;其中一级缓存分为指令缓存IL1和数据缓存DL1&#xff0c;二级缓存L2 256kB&#xff0c;三级缓存 L3 8MB。 从上图可以看出L3比L2大得多…

从零开始:PostgreSQL入门完全指南

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

【漏洞复现】大华智慧园区综合管理平台前台任意文件上传漏洞

文章目录 前言声明一、简介二、影响范围三、资产搜索四、漏洞测试四、修复建议前言 大华智慧园区综合管理平台存在前台任意文件上传漏洞,攻击者可通过特定Payload获取服务器敏感信息,进而获取服务器控制权限。 声明 请勿利用文章内的相关技术从事非法测试,由于传播、利用…

树和二叉树的相关概念及结构

目录 1.树的概念及结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.3.1 孩子兄弟表示法 1.3.2 双亲表示法 1.4 树的实际应用 2.二叉树的概念及结构 2.1 二叉树的概念 2.2 特殊的二叉树 2.3 二叉树的性质 2.4 二叉树的存储 2.4.1 顺序存储 2.4.2 链式存储 1.树…