计算机竞赛 大数据房价预测分析与可视

news2024/11/22 10:21:08

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 大数据房价预测分析与可视

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

Ames数据集包含来自Ames评估办公室的2930条记录。
该数据集具有23个定类变量,23个定序变量,14个离散变量和20个连续变量(以及2个额外的观察标识符) - 总共82个特征。
可以在包含的codebook.txt文件中找到每个变量的说明。
该信息用于计算2006年至2010年在爱荷华州艾姆斯出售的个别住宅物业的评估价值。实际销售价格中增加了一些噪音,因此价格与官方记录不符。

分别分为训练和测试集,分别为2000和930个观测值。 在测试集中保留实际销售价格。 此外,测试数据进一步分为公共和私有测试集。

本次练习需要围绕以下目的进行:

  • 理解问题 : 观察每个变量特征的意义以及对于问题的重要程度
  • 研究主要特征 : 也就是最终的目的变量----房价
  • 研究其他变量 : 研究其他多变量对“房价”的影响的他们之间的关系
  • 基础的数据清理 : 对一些缺失数据、异常点和分类数据进行处理
  • 拟合模型: 建立一个预测房屋价值的模型,并且准确预测房价

在这里插入图片描述

2 导入相关的数据

1.导入相关的python包




​    
​    import numpy as np
​    

import pandas as pd
from pandas.api.types import CategoricalDtype

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn import linear_model as lm
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold

# Plot settings

plt.rcParams['figure.figsize'] = (12, 9)
plt.rcParams['font.size'] = 12

2. 导入训练数据集和测试数据集




​    
​    training_data = pd.read_csv("ames_train.csv")
​    test_data = pd.read_csv("ames_test.csv")
​    pd.set_option('display.max_columns', None)#显示所有行
​    pd.set_option('display.max_rows', None)#设置value的显示长度为100,默认为50
​    pd.set_option('max_colwidth',100)
​    training_data.head(7)

在这里插入图片描述

3 观察各项主要特征与房屋售价的关系

该数据集具有46个类别型变量,34个数值型变量,整理到excel表格中,用于筛选与房价息息相关的变量。从中筛选出以下几个与房价相关的变量:

类别型变量:

  • Utilities : 可用设施(电、天然气、水)

  • Heating (Nominal): 暖气类型

  • Central Air (Nominal): 是否有中央空调

  • Garage Type (Nominal): 车库位置

  • Neighborhood (Nominal): Ames市区内的物理位置(地图地段)

  • Overall Qual (Ordinal): 评估房屋的整体材料和光洁度

数值型变量:

  • Lot Area(Continuous):地皮面积(平方英尺)

  • Gr Liv Area (Continuous): 地面以上居住面积平方英尺

  • Total Bsmt SF (Continuous): 地下面积的总面积

  • TotRmsAbvGrd (Discrete): 地面上全部房间数目

分析最重要的变量"SalePrice"

    training_data['SalePrice'].describe()

在这里插入图片描述

从上面的描述性统计可以看出房价的平均值、标准差、最小值、25%分位数、50%分位数、75%分位数、最大值等,并且SalePrice没有无效或者其他非数值的数据。

    
    #绘制"SalePrice"的直方图
    sns.distplot(training_data['SalePrice'])
    #计算峰度和偏度
    print("Skewness: %f" % training_data['SalePrice'].skew())
    print("Kurtosis: %f" % training_data['SalePrice'].kurt())

在这里插入图片描述

从直方图中可以看出"SalePrice"成正态分布,峰度为4.838055,偏度为1.721408,比正态分布的高峰更加陡峭,偏度为右偏,长尾拖在右边。

2.类别型变量

(1)Utilities与SalePrice

Utilities (Ordinal): Type of utilities available

AllPub All public Utilities (E,G,W,& S)

NoSewr Electricity, Gas, and Water (Septic Tank)

NoSeWa Electricity and Gas Only

ELO Electricity only




​    
​    #类别型变量#1.Utilities 
​    var = 'Utilities'
​    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
​    fig = sns.boxplot(x=var, y="SalePrice", data=data)
​    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

从图中可以看出,配备全套设施(水、电、天然气)的房子价格普遍偏高

(2)Heating与SalePrice

Heating (Nominal): Type of heating

Floor Floor Furnace

GasA Gas forced warm air furnace

GasW Gas hot water or steam heat

Grav Gravity furnace

OthW Hot water or steam heat other than gas

Wall Wall furnace




​    
​    #2.Heating
​    var = 'Heating'
​    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
​    fig = sns.boxplot(x=var, y="SalePrice", data=data)
​    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

从图中可以看出拥有GasA、GasW的房子价格较高,并且有GasA的房子价格变动较大,房屋价格较高的房子一般都有GasA制暖装置。

(3)Central_Air与SalePrice

#3.Central_Air
​    var = 'Central_Air'
​    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
​    fig = sns.boxplot(x=var, y="SalePrice", data=data)
​    fig.axis(ymin=0, ymax=800000)



在这里插入图片描述

由中央空调的房子能给用户更好的体验,因此一般价格较高,房屋价格较高的房子一般都有中央空调。

(4)Gabage_type与SalePrice

Garage Type (Nominal): Garage location

2Types More than one type of garage

Attchd Attached to home

Basment Basement Garage

BuiltIn Built-In (Garage part of house - typically has room above garage)

CarPort Car Port

Detchd Detached from home

NA No Garage

    
    #4.Gabage_type
    var = 'Garage_Type'
    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
    fig = sns.boxplot(x=var, y="SalePrice", data=data)
    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

车库越便捷,一般房屋价格越高,临近房屋以及房屋内置的车库这两种价格较高。

(5)Neighborhood与SalePrice

Neighborhood为房屋位于Ames市内的具体的地段,越临近繁华市区、旅游风景区、科技园区、学园区的房屋,房屋价格越贵




​    
​    #5.Neighborhood
​    fig, axs = plt.subplots(nrows=2)
​    

    sns.boxplot(
        x='Neighborhood',
        y='SalePrice',
        data=training_data.sort_values('Neighborhood'),
        ax=axs[0]
    )
    
    sns.countplot(
        x='Neighborhood',
        data=training_data.sort_values('Neighborhood'),
        ax=axs[1]
    )
    
    # Draw median price
    axs[0].axhline(
        y=training_data['SalePrice'].median(), 
        color='red',
        linestyle='dotted'
    )
    
    # Label the bars with counts
    for patch in axs[1].patches:
        x = patch.get_bbox().get_points()[:, 0]
        y = patch.get_bbox().get_points()[1, 1]
        axs[1].annotate(f'{int(y)}', (x.mean(), y), ha='center', va='bottom')
        
    # Format x-axes
    axs[1].set_xticklabels(axs[1].xaxis.get_majorticklabels(), rotation=90)
    axs[0].xaxis.set_visible(False)
    
    # Narrow the gap between the plots
    plt.subplots_adjust(hspace=0.01)



在这里插入图片描述

从上图结果可以看出,我们训练数据集中Neighborhood这一列数据不均匀,NAmes有299条数据,而Blueste只有4条数据,Gilbert只有6条数据,GmHill只有2条数据,这样造成数据没那么准确。

(6)Overall Qual 与SalePrice

总体评价越高,应该房屋的价格越高

    
    #Overall Qual 
    var = 'Overall_Qual'
    data = pd.concat([training_data['SalePrice'], training_data[var]], axis=1)
    fig = sns.boxplot(x=var, y="SalePrice", data=data)
    fig.axis(ymin=0, ymax=800000)

在这里插入图片描述

3.数值型变量

(1) Lot Area与SalePrice

    #数值型变量
    #1.Lot Area
    sns.jointplot(
        x='Lot_Area', 
        y='SalePrice', 
        data=training_data,
        stat_func=None,
        kind="reg",
        ratio=4,
        space=0,
        scatter_kws={
            's': 3,
            'alpha': 0.25
        },
        line_kws={
            'color': 'black'
        }
    )

在这里插入图片描述

看起来没有什么明显的趋势,散点图主要集中在前半部分,不够分散

(2)Gr_Liv_Area与SalePrice

Gr_Liv_Area代表建筑在土地上的房屋的面积

猜测两者应该成正相关,即房屋面积越大,房屋的价格越高

    sns.jointplot(
        x='Gr_Liv_Area', 
        y='SalePrice', 
        data=training_data,
        stat_func=None,
        kind="reg",
        ratio=4,
        space=0,
        scatter_kws={
            's': 3,
            'alpha': 0.25
        },
        line_kws={
            'color': 'black'
        }
    )

在这里插入图片描述

结果:两者的确呈现正相关的线性关系,发现Gr_ Liv _ Area中有处于5000以上的异常值

编写函数,将5000以上的Gr_ Liv _ Area异常值移除




​    
​    def remove_outliers(data, variable, lower=-np.inf, upper=np.inf):"""
​        Input:
​          data (data frame): the table to be filtered
​          variable (string): the column with numerical outliers
​          lower (numeric): observations with values lower than this will be removed
​          upper (numeric): observations with values higher than this will be removed
​        

        Output:
          a winsorized data frame with outliers removed
        """
        data=data[(data[variable]>lower)&(data[variable]



再次绘图

在这里插入图片描述

两者的确呈现正相关的线性关系

(3)Total_Bsmt_SF与SalePrice

#3.Total Bsmt SF
​    sns.jointplot(
​        x='Total_Bsmt_SF', 
​        y='SalePrice', 
​        data=training_data,
​        stat_func=None,
​        kind="reg",
​        ratio=4,
​        space=0,
​        scatter_kws={'s': 3,'alpha': 0.25},
​        line_kws={'color': 'black'})



在这里插入图片描述

(4)TotRms_AbvGrd与SalePrice

   
    #4.TotRmsAbvGrd
    sns.jointplot(
        x='TotRms_AbvGrd', 
        y='SalePrice', 
        data=training_data,
        stat_func=None,
        kind="reg",
        ratio=4,
        space=0,
        scatter_kws={
            's': 3,
            'alpha': 0.25
        },
        line_kws={
            'color': 'black'
        }
    )

在这里插入图片描述

4. 绘制相关性矩阵

    
    #绘制相关性矩阵
    corrmat = training_data.corr()
    f, ax = plt.subplots(figsize=(40, 20))
    sns.heatmap(corrmat, vmax=0.8,square=True,cmap="PiYG",center=0.0)

在这里插入图片描述

其中数值型变量中,Overall_Qual(房屋的整体评价) 、Year_Built(房屋建造年份)、Year_Remod/Add(房屋整修年份)、Mas
Vnr Area(房屋表层砌体模型)、Total_ Bsmt _ SF(地下总面积)、1stFlr_SF(一楼总面积) Gr_ L
iv_Area(地上居住面积)、Garage_Cars (车库数量)、Garage_Area(车库面积)都与呈正相关

最后从Year_Built(房屋建造年份)、Year_Remod/Add(房屋整修年份)中选取Year_Built,从1stFlr_SF(一楼总面积)
Gr_ L iv_Area(地上居住面积)中选取Gr_ L iv_Area,从Garage_Cars
(车库数量)、Garage_Area(车库面积)中选取Garage_Cars (车库数量)。

6. 拟合模型

sklearn中的回归有多种方法,广义线性回归集中在linear_model库下,例如普通线性回归、Lasso、岭回归等;另外还有其他非线性回归方法,例如核svm、集成方法、贝叶斯回归、K近邻回归、决策树回归、随机森林回归方法等,通过测试各个算法的

(1)加载相应包




​    
​    #拟合数据from sklearn import preprocessing
​    from sklearn import linear_model, svm, gaussian_process
​    from sklearn.ensemble import RandomForestRegressor
​    from sklearn.cross_validation import train_test_split
​    import numpy as np

(2)查看各列缺失值

    
      #查看各列缺失值
        print(training_data.Overall_Qual.isnull().any())
        print(training_data.Gr_Liv_Area.isnull().any())
        print(training_data.Garage_Cars.isnull().any())
        print(training_data.Total_Bsmt_SF.isnull().any())
        print(training_data.Year_Built.isnull().any())
        print(training_data.Mas_Vnr_Area.isnull().any())

发现Total_Bsmt_SF和Mas_Vnr_Area两列有缺失值




​    
​       #用均值填补缺失值
​        training_data.Total_Bsmt_SF=training_data.Total_Bsmt_SF.fillna(training_data.Total_Bsmt_SF.mean())
​        training_data.Mas_Vnr_Area=training_data.Mas_Vnr_Area.fillna(training_data.Mas_Vnr_Area.mean())print(training_data.Total_Bsmt_SF.isnull().any())print(training_data.Mas_Vnr_Area.isnull().any())

(3)拟合模型

# 获取数据from sklearn import metrics
​        cols = ['Overall_Qual','Gr_Liv_Area', 'Garage_Cars','Total_Bsmt_SF', 'Year_Built','Mas_Vnr_Area']
​        x = training_data[cols].values
​        y = training_data['SalePrice'].values
​        X_train,X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
​        

        clf = RandomForestRegressor(n_estimators=400)
        clf.fit(X_train, y_train)
        y_pred = clf.predict(X_test)
        计算MSE:
        print(metrics.mean_squared_error(y_test,y_pred))



(4)绘制预测结果的散点图




​    
​    import numpy as np
​    x = np.random.rand(660)
​    plt.scatter(x,y_test, alpha=0.5)
​    plt.scatter(x,y_pred, alpha=0.5,color="G")

在这里插入图片描述

(5)加载测试集数据

    
    test_data=pd.read_csv("ames_test.csv")
    test_data.head(5)

在这里插入图片描述

查看缺失值

    
    #查看各列缺失值
    print(test_data.Overall_Qual.isnull().any())
    print(test_data.Gr_Liv_Area.isnull().any())
    print(test_data.Garage_Cars.isnull().any())
    print(test_data.Total_Bsmt_SF.isnull().any())
    print(test_data.Year_Built.isnull().any())
    print(test_data.Mas_Vnr_Area.isnull().any())

    
    #用均值填补缺失值
    test_data.Garage_Cars=training_data.Garage_Cars.fillna(training_data.Garage_Cars.mean())
    print(test_data.Garage_Cars.isnull().any())

(6)预测测试集的房价

#预测
​        cols = ['Overall_Qual','Gr_Liv_Area', 'Garage_Cars','Total_Bsmt_SF', 'Year_Built','Mas_Vnr_Area']
​        x_test_value= test_data[cols].values
​        test_pre=clf.predict(x_test_value)#写入文件
​        prediction = pd.DataFrame(test_pre, columns=['SalePrice'])
​        result = pd.concat([test_data['Id'], prediction], axis=1)
​        result.to_csv('./Predictions.csv', index=False)
​    

      test_data.Garage_Cars=training_data.Garage_Cars.fillna(training_data.Garage_Cars.mean())
        print(test_data.Garage_Cars.isnull().any())



(6)预测测试集的房价




​    
​    #预测
​    cols = ['Overall_Qual','Gr_Liv_Area', 'Garage_Cars','Total_Bsmt_SF', 'Year_Built','Mas_Vnr_Area']
​    x_test_value= test_data[cols].values
​    test_pre=clf.predict(x_test_value)#写入文件
​    prediction = pd.DataFrame(test_pre, columns=['SalePrice'])
​    result = pd.concat([test_data['Id'], prediction], axis=1)
​    result.to_csv('./Predictions.csv', index=False)

4 最后

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

[https://gitee.com/dancheng-senior/postgraduate](

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1006474.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java复习-线程常用操作方法

线程常用操作方法 线程的主要方法都定义在 Thread类 之中,因此此处就是学习Thread中的方法。 一. 线程的命名与取得 构造方法:public Thread(Runnable target, String name)设置名字:public final synchronized void setName(String name)…

解决“您在 /var/spool/mail/root 中有新邮件”问题

一、发现问题 二、解决问题 1、删除邮件 cat /dev/null > /var/spool/mail/root 2、禁止系统启动邮件检查 echo "unset MAILCHECK" >> /etc/profile 三、解决结果

16G FC SFP+ SW光模块应用解析

随着云计算、大数据和物联网等技术的迅猛发展,数据传输速率不断提高。传统的铜缆传输面临带宽瓶颈和信号衰减等问题,而光纤传输凭借其高带宽、低损耗等优势成为了现代通信的主要选择。易天光通信的16G SFP SW 多模光模块作为高性能光纤传输设备&#xff…

SAP HANA 体系结构,LandScape,规模调整:完整教程

目录 一、SAP HANA 体系结构 二、SAP HANA 景观 三、SAP HANA 大小调整 SAP HANA 数据库是以主内存为中心的数据管理平台。 SAP HANA 数据库在 SUSE Linux Enterprises Server 上运行,并基于 C 语言构建。 SAP HANA 数据库可以分发到多台计算机。 SAP HANA 的优…

上海亚商投顾:三大指数小幅下跌 光刻机概念股午后走强

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 三大指数昨日小幅调整,创业板指走势较弱。减肥药概念股继续大涨,常山药业2连板&#x…

CDH 集群离线部署、大数据组件安装与扩容详细步骤(cdh-6.3.1)

一、环境准备 1、服务器配置和角色规划 IP 地址主机名硬件配置操作系统安装步骤10.168.168.1cm-server8C16GCentos7新建10.168.168.2agent018C16GCentos7新建10.168.168.3agent028C16GCentos7新建10.168.168.4agent038C16GCentos7新建10.168.168.5agent048C16GCentos7扩容 2…

Harmonic Drive哈默纳科减速机旋转方向和减速比

Harmonic Drive哈默纳科减速机是一款广泛应用于工业生产中的机械设备,通过减速旋转运动来降低机器的转速和输出功率,从而实现精准的调节和控制。哈默纳科减速机的结构紧凑,体积小,重量轻,安装方便,维护简单…

深入了解 FastAPI 鉴权:掌握前后端身份验证的最佳实践

在构建现代化的 Web 应用程序时,用户身份验证和授权是不可或缺的组成部分。FastAPI 提供了多种方法来实现鉴权,以确保只有授权用户可以访问特定的资源或执行特定的操作。本文将介绍 FastAPI 中的鉴权方法,包括基本概念、实践案例和一些提示和…

企业如何转动自己的命运齿轮,实现数字化转型

企业进行数字化转型,需要熟悉数字化转型相关知识,了解众多前辈企业数字化转型成功或失败的案例,从中提炼出数字化转型的关键要点,在数字化转型的浪潮中,破浪前行。 数字化转型关键因素 1、数据 数据是数字化转型的基…

zeppelin安装python(使用pymysql包)

zeppelin安装python: zeppelin的测试环境安装的python的pymysql包 更改zeppelin的python的interpreters(注意需要匹配跟我们的python版本相匹配) 参考官网链接:https://zeppelin.apache.org/docs/0.10.1/interpreter/python.htm…

开源软件镜像平台-山东大学镜像站

山东大学镜像站 山东大学镜像站是由山东大学(青岛)网管会镜像站学生运营团队运营的开源镜像站平台,网站平台专门为技术爱好者、工程师、科研人员等开源爱好者提供给丰富的开源镜软件像资源,以及相关的学习和帮助资料,…

简单聊聊G1垃圾回收算法整个流程 --- 理论篇 -- 上

简单聊聊G1垃圾回收算法整个流程 --- 理论篇 -- 上 G1 是什么为什么需要 G1 G1 GC 流程并发标记根对象枚举安全点 位图标记整体流程初始标记阶段并发标记阶段三色标记法SATB(原始快照)SATB 专用写屏障优化SATB 专用写屏障和多线程执行 最终标记存活对象计数收尾工作转移效率总结…

Python实现自主售卖机

1 问题 在python中我们常常使用到条件判断,if语句时常见的条件判断语句之一。那么如何使用if语句实现根据情况自动选择商品进行售卖呢? 2 方法 根据if语句执行时从上往下执行的特点,使用if语句、dict和list来实现整个流程。 代码清单 1 drink…

jd(按关键字搜索商品)API接口

为了进行电商平台 的API开发,首先我们需要做下面几件事情。 1)开发者注册一个账号 2)然后为每个jd应用注册一个应用程序键(App Key) 。 3)下载jdAPI的SDK并掌握基本的API基础知识和调用 4)利用SDK接口和…

长胜证券:新股配号是怎么配的?

近年来,股票买卖成为了越来越多人的出资选择,而新股的配号过程也成为了社会热议的论题。那么,新股配号是怎么配的呢?本文将从发行方法、配号规矩和影响要素等多个角度分析,为读者解答这一问题。 发行方法 首先要了解的…

运维必备 | ansible 自动化运维工具之变量的定义与调用

各位亲爱的读者,现在公众号更改了推送规则,如果您需要第一时间看到我们推送的好内容。 一定要记得给公众号星标,经常点赞、在看、转发、分享和留下您的评论 ! 关注回复【学习交流群】加入【安全开发运维】答疑交流群 请朋友们【多…

全球变暖我们在行动

人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的二氧化碳等多种温室气体,这些温室气体是导致全球气候变暖的主要原因。 二氧化碳的生态平衡遭到破坏,大气中二氧化碳含量逐年增加,导致地…

国产理想二极管控制器SCT53600,可替代TI的LM74700

SCT53600是一个理想二极管控制器,与外部n通道MOSFET作为一个理想的二极管整流器,低损耗反向极性保护,以取代肖特基二极管。SCT53600在4V到65V的宽电源电压范围内工作。该设备能够承受并保护负供电电压下的负载,并阻止反向电流&…

【自用】深度学习工作站安装ubuntu 18.04 LTS系统

工作站配置: 自己组装的 主板:华硕Z790P(PCIE插槽间距大,可以装双显卡) CPU:i5 13600KF 内存:32 G 显卡:GTX 2080 Ti (魔改版,22G) 存储&#xf…

Python 图形化界面基础篇:添加文本框( Entry )到 Tkinter 窗口

Python 图形化界面基础篇:添加文本框( Entry )到 Tkinter 窗口 引言什么是 Tkinter 文本框( Entry )?步骤1:导入 Tkinter 模块步骤2:创建 Tkinter 窗口步骤3:创建文本框&…