默认分片算法
Sharding JDBC通过org.apache.shardingsphere.sharding.spi.ShardingAlgorithm接口定义了数据分片算法,5.2.1版本默认提供了如下的分片算法
配置标识 | 自动分片算法 | 详细说明 | 类名 |
---|---|---|---|
MOD | Y | 基于取模的分片算法 | ModShardingAlgorithm |
HASH_MOD | Y | 基于哈希取模的分片算法 | HashModShardingAlgorithm |
BOUNDARY_RANGE | Y | 基于分片边界的范围分片算法 | BoundaryBasedRangeShardingAlgorithm |
VOLUME_RANGE | Y | 基于分片容量的范围分片算法 | VolumeBasedRangeShardingAlgorithm |
AUTO_INTERVAL | Y | 基于可变时间范围的分片算法 | AutoIntervalShardingAlgorithm |
INTERVAL | N | 基于固定时间范围的分片算法 | IntervalShardingAlgorithm |
CLASS_BASED | N | 基于自定义类的分片算法 | ClassBasedShardingAlgorithm |
INLINE | N | 基于行表达式的分片算法 | InlineShardingAlgorithm |
COMPLEX_INLINE | N | 基于行表达式的复合分片算法 | ComplexInlineShardingAlgorithm |
HINT_INLINE | N | 基于行表达式的 Hint 分片算法 | HintInlineShardingAlgorithm |
默认算法的继承关系如下
分片算法参考官方用户文档:默认分片算法介绍
自定义分片算法
自定义分片算法时通过配置分片策略类型和算法类名,实现自定义扩展。 CLASS_BASED
允许向算法类内传入额外的自定义属性,传入的属性可以通过属性名为 props
的 java.util.Properties
类实例取出。
自定义分片算法有三种类型
- 标准分片算法
- 复杂分片算法
- hint分片算法
对应需要实现的接口分别为:
算法分类 | 需要实现接口 | 说明 |
---|---|---|
标准 | StandardShardingAlgorithm | 支持单个分片键,需要实现精确和范围分片接口 |
复杂 | ComplexShardingAlgorithm | 支持多个分片键,但是分片键数据类型需要一样 |
hint | HintShardingAlgorithm | 没有分片键,分片值通过hint注入而不是SQL |
分片算法开发
以标准算法为例,对下面的order_t进行分表
CREATE TABLE `order_t` (
`order_id` bigint(20) NOT NULL COMMENT 'order_id主键',
`order_no` varchar(32) DEFAULT NULL COMMENT '订单编号',
`user_id` bigint(10) NOT NULL COMMENT '用户ID',
`order_date` date NOT NULL COMMENT '下单时间',
`order_amount` decimal(16,2) NOT NULL COMMENT '订单金额',
`delivery_amount` decimal(16,2) DEFAULT '0.00' COMMENT '运费',
`total_amount` decimal(16,2) NOT NULL COMMENT '汇总金额',
`receiver_id` bigint(10) NOT NULL COMMENT '收货地址ID',
`status` tinyint(4) DEFAULT '1' COMMENT '状态,1:已提交,2:已付款,3:待发货,4:已发货,5:已收货,6:已完成',
`deleted` tinyint(4) DEFAULT '0' COMMENT '删除标志,0:未删除,1:已删除',
`create_by` bigint(10) DEFAULT NULL COMMENT '创建人',
`creation_date` datetime DEFAULT NULL COMMENT '创建时间',
`last_update_by` bigint(10) DEFAULT NULL COMMENT '修改人',
`last_update_date` datetime DEFAULT NULL COMMENT '修改时间',
PRIMARY KEY (`order_id`),
KEY `idx_useId` (`user_id`),
KEY `idx_orderNo` (`order_no`),
KEY `idx_orderDate` (`order_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='订单表';
分表规则为
- 按照下单时间order_date分表
- 一个季度分一个表
- 只分2023年
目标表有:order_t1,order_t2,order_t3,order_t4
配置如下:
spring:
shardingsphere:
rules:
sharding:
tables: # 需要分库表的规则配置
order_t:
actual-data-nodes: ds0.order_t$->{1..4} # 待选数据节点:ds0.order_t1、ds0.order_t2、ds0.order_t3
key-generate-strategy: # 分布式ID列,一般是主键
column: order_id
key-generator-name: beautySnowflake # 使用自定义分布式ID算法是
table-strategy: # 分库策略配置
standard: # 标准算法
sharding-column: order_date # 分片列
sharding-algorithm-name: quarter_std # 分片算法
key-generators: # 分布式ID生成算法
beautySnowflake:
type: BEAUTY_SNOWFLAKE
sharding-algorithms: # 分片算法,配置后可以在分片表的分片策略中被引用
quarter_std:
type: CLASS_BASED
props:
strategy: standard # 标准算法
algorithmClassName: com.xlt.sharding.startegy.DateStdShardingAlgorithm # 自定义算法类路径
lowerLimit: "2023-01-01 00:00:00" # 分片时间下限
upperLimit: "2023-12-31 24:00:00" # 分片时间上限
interval: 3 # 分片间隔月数
自定义标准分片算法DateStdShardingAlgorithm需要实现StandardShardingAlgorithm接口,实现其精确分片和范围分片doSharding方法,除此之外还要实现init、getProps、getType等方法。
@Slf4j
public class DateStdShardingAlgorithm implements StandardShardingAlgorithm<Date> {
private Date lowerDate;
private Date upperDate;
private Integer interval;
private Properties properties;
private static final String DATE_PATTERN = "yyyy-MM-dd HH:mm:ss";
@Override
public void init(Properties properties) {
String lowerLimit = (String) properties.get("lowerLimit");
String upperLimit = (String) properties.get("upperLimit");
String interval = (String) properties.get("interval");
AssertUtil.isNull(lowerLimit, "lowerLimit can't be empty");
AssertUtil.isNull(upperLimit, "upperLimit can't be empty");
AssertUtil.isNull(interval, "interval can't be empty");
this.lowerDate = parseDate(lowerLimit);
this.upperDate = parseDate(upperLimit);
this.interval = Integer.parseInt(interval);
this.properties = properties;
}
private Date parseDate(String lowerLimit) {
Date date = null;
SimpleDateFormat sdf = new SimpleDateFormat(DATE_PATTERN);
try {
date = sdf.parse(lowerLimit);
} catch (ParseException e) {
log.error("String date parse error:", e);
throw new CommonException(e.getMessage());
}
return date;
}
private String formatDate(Date date) {
SimpleDateFormat sdf = new SimpleDateFormat(DATE_PATTERN);
return sdf.format(date);
}
private int getYear(Date date) {
Calendar calendar = Calendar.getInstance();
calendar.setTime(date);
return calendar.get(Calendar.YEAR);
}
private int getMonth(Date date) {
Calendar calendar = Calendar.getInstance();
calendar.setTime(date);
return calendar.get(Calendar.MONTH) + 1;
}
/**
* Get properties.
*
* @return properties
*/
@Override
public Properties getProps() {
return properties;
}
/**
* Get type.
*
* @return type
*/
@Override
public String getType() {
return "QUARTER_DATE";
}
/**
* Sharding.
*
* @param tableNames available data sources or table names
* @param shardingValue sharding value
* @return sharding result for data source or table name
*/
@Override
public String doSharding(Collection<String> tableNames, PreciseShardingValue<Date> shardingValue) {
log.info("tableNames={},shardingValue={},properties={}", JSON.toJSONString(tableNames), JSON.toJSONString(shardingValue), JSON.toJSONString(properties));
Date date = shardingValue.getValue();
AssertUtil.isTrue(date.getTime() < lowerDate.getTime(), formatDate(date) + " is before lowerLimit: " + formatDate(lowerDate));
AssertUtil.isTrue(date.getTime() > upperDate.getTime(), formatDate(date) + " is after upperLimit: " + formatDate(upperDate));
int idx = calTableIdx(date);
log.info("idx={}", idx);
String targetTable = "";
for (String tableName : tableNames) {
String tblIdxStr = tableName.substring(tableName.indexOf("t") + 1);
int tblIdx = Integer.parseInt(tblIdxStr);
if (tblIdx == idx) {
targetTable = tableName;
break;
}
}
log.info("targetTable={}", targetTable);
return targetTable;
}
private int calTableIdx(Date date) {
int months = (getYear(date) - getYear(lowerDate)) * 12 + getMonth(date);
int flag = months % interval == 0 ? 0 : 1;
return months / interval + flag;
}
/**
* Sharding.
*
* @param tableNames available data sources or table names
* @param shardingValue sharding value
* @return sharding results for data sources or table names
*/
@Override
public Collection<String> doSharding(Collection<String> tableNames, RangeShardingValue<Date> shardingValue) {
log.info("tableNames={},shardingValue={},properties={}", JSON.toJSONString(tableNames), JSON.toJSONString(shardingValue), JSON.toJSONString(properties));
Date lowDate = shardingValue.getValueRange().lowerEndpoint();
Date upDate = shardingValue.getValueRange().upperEndpoint();
AssertUtil.isTrue(lowDate.getTime() > upDate.getTime(), formatDate(lowDate) + " is after upperEndpoint: " + formatDate(upDate));
AssertUtil.isTrue(lowDate.getTime() < lowerDate.getTime(), formatDate(lowDate) + " is before lowerLimit: " + formatDate(lowerDate));
AssertUtil.isTrue(upDate.getTime() > upperDate.getTime(), formatDate(upDate) + " is after upperLimit: " + formatDate(upperDate));
int lowIdx = calTableIdx(lowDate);
int upIdx = calTableIdx(upDate);
log.info("lowIdx={},upIdx={}", lowIdx, upIdx);
List<String> targetTbls = new ArrayList<>();
for (String tableName : tableNames) {
String dsIdxStr = tableName.substring(tableName.indexOf("t") + 1);
int dsIdx = Integer.parseInt(dsIdxStr);
if (dsIdx >= lowIdx && dsIdx <= upIdx) {
targetTbls.add(tableName);
}
}
log.info("target table names={}", targetTbls);
return targetTbls;
}
}
测试用例设计
针对以上的分片算法设计测试用例对其进行验证
1、新增订单数据
使用JMockData和Faker生成100条随机数据进行插入测试
@SpringBootTest
@Slf4j
public class ShardingJdbcTest {
@Autowired
private IOrderMapper mapper;
/**
* 新增订单
*/
@Test
public void addOrder() {
for (int i = 0; i < 100; i++) {
OrderPo orderPo = JMockData.mock(OrderPo.class);
orderPo.setOrderId((long) i);
orderPo.setStatus(1);
orderPo.setDeleted(0);
Faker faker = new Faker();
Calendar fromDate = Calendar.getInstance();
fromDate.set(2023, Calendar.JANUARY, 1);
Calendar toDate = Calendar.getInstance();
toDate.set(2023, Calendar.DECEMBER, 31);
orderPo.setOrderDate(faker.date().between(fromDate.getTime(), toDate.getTime()));
log.info("add new order:{}", orderPo);
mapper.insert(orderPo);
}
}
}
生成数据情况,order_t1中order_date为1-3月:
order_t2中order_date为4-6月:
2、查询订单数据-等值查询
使用分片键查询单一时间的数据
/**
* 单个查询
*/
@Test
public void queryOrder_1() {
QueryWrapper<OrderPo> queryWrapper = new QueryWrapper<>();
queryWrapper.eq("order_date", DateUtil.parseDate("2023-03-12", DateUtil.DATE_PATTERN_2));
List<OrderPo> orderPos = mapper.selectList(queryWrapper);
log.info("orderPos={}", JSON.toJSONString(orderPos));
}
从日志中看,找到目标表之后,查到了对应的数据
3、范围查询订单数据
使用分片键查询一定时间范围内的数据
/**
* 范围查询
*/
@Test
public void queryOrder_2() {
QueryWrapper<OrderPo> queryWrapper = new QueryWrapper<>();
queryWrapper.between("order_date", DateUtil.parseDate("2023-05-01", DateUtil.DATE_PATTERN_2), DateUtil.parseDate("2023-08-01", DateUtil.DATE_PATTERN_2));
List<OrderPo> orderPos = mapper.selectList(queryWrapper);
log.info("orderPos={}", JSON.toJSONString(orderPos));
}
可以看到查询过程中,根据order_date的范围,经过分片算法的计算,路由到了order_t_2和order_t_3表,然后查回相应的数据