文章目录
- 一、题目
- 二、解法
- 三、完整代码
所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。
一、题目
二、解法
思路分析:二叉搜索树的性质是左子树的所有节点键值小于中间节点键值,右子树的所有节点键值大于中间节点键值,且左子树和右子树也是二叉搜索树,于是我们得到二叉搜索树的中序遍历是单调递增的有序数组,那么一个有序数组两数之间绝对值最小的值一定是相邻节点的差值,那么我们只要计算出中序遍历数组相邻元素差值的最小值即可。关于二叉搜索树的性质可以看这篇文章:【算法与数据结构】98、LeetCode验证二叉搜索树。
程序如下:
class Solution {
public:
void traversal_midOrder(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
traversal_midOrder(cur->left, vec); // 左
vec.push_back(cur->val); // 中
traversal_midOrder(cur->right, vec); // 右
}
int getMinimumDifference(TreeNode* root) {
if (root == NULL) return {};
vector<int> v;
traversal_midOrder(root, v);
int minVal = v[1] - v[0];
if (v.size() != 1) {
for (int i = 1; i < v.size()-1; i++) {
if (v[i+1] - v[i] < minVal) minVal = v[i + 1] - v[i];
}
}
return minVal;
}
};
三、完整代码
# include <iostream>
# include <vector>
# include <string>
# include <queue>
using namespace std;
// 树节点定义
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
class Solution {
public:
void traversal_midOrder(TreeNode* cur, vector<int>& vec) {
if (cur == NULL) return;
traversal_midOrder(cur->left, vec); // 左
vec.push_back(cur->val); // 中
traversal_midOrder(cur->right, vec); // 右
}
int getMinimumDifference(TreeNode* root) {
if (root == NULL) return {};
vector<int> v;
traversal_midOrder(root, v);
int minVal = v[1] - v[0];
if (v.size() != 1) {
for (int i = 1; i < v.size()-1; i++) {
if (v[i+1] - v[i] < minVal) minVal = v[i + 1] - v[i];
}
}
return minVal;
}
};
// 前序遍历迭代法创建二叉树,每次迭代将容器首元素弹出(弹出代码还可以再优化)
void Tree_Generator(vector<string>& t, TreeNode*& node) {
if (!t.size() || t[0] == "NULL") return; // 退出条件
else {
node = new TreeNode(stoi(t[0].c_str())); // 中
if (t.size()) {
t.assign(t.begin() + 1, t.end());
Tree_Generator(t, node->left); // 左
}
if (t.size()) {
t.assign(t.begin() + 1, t.end());
Tree_Generator(t, node->right); // 右
}
}
}
template<typename T>
void my_print(T& v, const string msg)
{
cout << msg << endl;
for (class T::iterator it = v.begin(); it != v.end(); it++) {
cout << *it << ' ';
}
cout << endl;
}
template<class T1, class T2>
void my_print2(T1& v, const string str) {
cout << str << endl;
for (class T1::iterator vit = v.begin(); vit < v.end(); ++vit) {
for (class T2::iterator it = (*vit).begin(); it < (*vit).end(); ++it) {
cout << *it << ' ';
}
cout << endl;
}
}
// 层序遍历
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
vector<vector<int>> result;
while (!que.empty()) {
int size = que.size(); // size必须固定, que.size()是不断变化的
vector<int> vec;
for (int i = 0; i < size; ++i) {
TreeNode* node = que.front();
que.pop();
vec.push_back(node->val);
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
result.push_back(vec);
}
return result;
}
int main()
{
vector<string> t = { "4", "2", "1", "NULL", "NULL", "3", "NULL", "NULL", "6", "NULL", "NULL" }; // 前序遍历
my_print(t, "目标树");
TreeNode* root = new TreeNode();
Tree_Generator(t, root);
vector<vector<int>> tree = levelOrder(root);
my_print2<vector<vector<int>>, vector<int>>(tree, "目标树:");
Solution s;
int result = s.getMinimumDifference(root);
cout << "任意两节点之差的最小绝对值为:" << result << endl;
system("pause");
return 0;
}
end