领域驱动设计:DDD 关键概念

news2024/12/26 11:11:44

文章目录

    • 领域和子域
    • 核心域、通用域和支撑域
    • 通用语言
    • 限界上下文
    • 实体
    • 值对象
    • 聚合
    • 聚合根
    • 设计聚合

  • DDD 的知识体系提出了很多的名词,像:领域、子域、核心域、通用域、支撑域、限界上下文、聚合、聚合根、实体、值对象等等,非常多。

领域和子域

  • 领域就是用来确定范围的,范围即边界,这也是 DDD 在设计中不断强调边界的原因。在研究和解决业务问题时,DDD 会按照一定的规则将业务领域进行细分,当领域细分到一定的程度后,DDD 会将问题范围限定在特定的边界内,在这个边界内建立领域模型,进而用代码实现该领域模型,解决相应的业务问题。简言之,DDD 的领域就是这个边界内要解决的业务问题域
  • 领域可以进一步划分为子领域。把划分出来的多个子领域称为子域,每个子域对应一个更小的问题域或更小的业务范围
  • 领域建模和微服务建设的过程和方法基本类似,其核心思想就是将问题域逐步分解,降低业务理解和系统实现的复杂度。通过领域细分,逐步缩小微服务需要解决的问题域,构建合适的领域模型,而领域模型映射成系统就是微服务了。

核心域、通用域和支撑域

  • 领域不断划分的过程中,领域会细分为不同的子域,子域可以根据自身重要性和功能属性划分为三类子域,它们分别是:核心域、通用域和支撑域。
    • 决定产品和公司核心竞争力的子域是核心域,它是业务成功的主要因素和公司的核心竞争力。
    • 没有太多个性化的诉求,同时被多个子域使用的通用功能子域是通用域。通用域是一些大家都需要用的通用系统,比如认证,权限等等,这类应用很容易买到,不需要做太多的定制化,没有企业特点。
    • 还有一种功能子域是必需的,但既不包含决定产品和公司核心竞争力的功能,也不包含通用功能的子域,它就是支撑域。支撑域具有企业特性,但不具有通用性,比如数据代码类的数据字典等系统。
  • 核心域、支撑域和通用域的主要目标是:通过领域划分,区分不同子域在公司内的不同功能属性和重要性,从而公司可对不同子域采取不同的资源投入和建设策略,其关注度也会不一样。

通用语言定义上下文含义,限界上下文则定义领域边界,以确保每个上下文含义在它特定的边界内都具有唯一的含义,领域模型则存在于这个边界之内。

通用语言

  • 在事件风暴过程中,通过团队交流达成共识的,能够简单、清晰、准确描述业务涵义和规则的语言就是通用语言。也就是说,通用语言是团队统一的语言,不管你在团队中承担什么角色,在同一个领域的软件生命周期里都使用统一的语言进行交流。
  • 通用语言包含术语和用例场景,并且能够直接反映在代码中。通用语言中的名词可以给领域对象命名,如商品、订单等,对应实体对象;而动词则表示一个动作或事件,如商品已下单、订单已付款等,对应领域事件或者命令。
  • 通用语言贯穿 DDD 的整个设计过程。作为项目团队沟通和协商形成的统一语言,基于它,你就能够开发出可读性更好的代码,将业务需求准确转化为代码设计。
  • 从事件风暴建立通用语言到领域对象设计和代码落地的完整过程:
    在这里插入图片描述
  • 在事件风暴的过程中,领域专家会和设计、开发人员一起建立领域模型,在领域建模的过程中会形成通用的业务术语和用户故事。事件风暴也是一个项目团队统一语言的过程。
  • 通过用户故事分析会形成一个个的领域对象,这些领域对象对应领域模型的业务对象,每一个业务对象和领域对象都有通用的名词术语,并且一一映射。
  • 微服务代码模型来源于领域模型,每个代码模型的代码对象跟领域对象一一对应。

经验分享:设计过程中我们可以用一些表格,来记录事件风暴和微服务设计过程中产生的领域对象及其属性。比如,领域对象在 DDD 分层架构中的位置、属性、依赖关系以及与代码模型对象的映射关系等。

限界上下文

  • 语言都有它的语义环境,同样,通用语言也有它的上下文环境。为了避免同样的概念或语义在不同的上下文环境中产生歧义,DDD 在战略设计上提出了“限界上下文”这个概念,用来确定语义所在的领域边界
  • 将限界上下文拆解为两个词:限界和上下文。限界就是领域的边界,而上下文则是语义环境。通过领域的限界上下文,我们就可以在统一的领域边界内用统一的语言进行交流。
  • 限界上下文的定义就是:用来封装通用语言和领域对象,提供上下文环境,保证在领域之内的一些术语、业务相关对象等(通用语言)有一个确切的含义,没有二义性。这个边界定义了模型的适用范围,使团队所有成员能够明确地知道什么应该在模型中实现,什么不应该在模型中实现。
  • 限界上下文是微服务设计和拆分的主要依据。在领域模型中,如果不考虑技术异构、团队沟通等其它外部因素,一个限界上下文理论上就可以设计为一个微服务。
  • 限界上下文在微服务设计中具有很重要的意义,如果限界上下文的方向偏离,那微服务的设计结果也就可想而知了。因此,我们只有理解了限界上下文的真正涵义以及它在微服务设计中的作用,才能真正发挥 DDD 的价值,这是基础也是前提。

实体

  • 在 DDD 中有这样一类对象,它们拥有唯一标识符,且标识符在历经各种状态变更后仍能保持一致。对这些对象而言,重要的不是其属性,而是其延续性和标识,对象的延续性和标识会跨越甚至超出软件的生命周期。我们把这样的对象称为实体。
  • 实体的业务形态:在 DDD 不同的设计过程中,实体的形态是不同的。在战略设计时,实体是领域模型的一个重要对象。领域模型中的实体是多个属性、操作或行为的载体。在事件风暴中,我们可以根据命令、操作或者事件,找出产生这些行为的业务实体对象,进而按照一定的业务规则将依存度高和业务关联紧密的多个实体对象和值对象进行聚类,形成聚合。实体和值对象是组成领域模型的基础单元
  • 实体的代码形态:在代码模型中,实体的表现形式是实体类,这个类包含了实体的属性和方法,通过这些方法实现实体自身的业务逻辑。在 DDD 里,这些实体类通常采用充血模型,与这个实体相关的所有业务逻辑都在实体类的方法中实现,跨多个实体的领域逻辑则在领域服务中实现。
  • 实体的运行形态:实体以 DO(领域对象)的形式存在,每个实体对象都有唯一的 ID。我们可以对一个实体对象进行多次修改,修改后的数据和原来的数据可能会大不相同。但是,由于它们拥有相同的 ID,它们依然是同一个实体。比如商品是商品上下文的一个实体,通过唯一的商品 ID 来标识,不管这个商品的数据如何变化,商品的 ID 一直保持不变,它始终是同一个商品。
  • 实体的数据库形态:与传统数据模型设计优先不同,DDD 是先构建领域模型,针对实际业务场景构建实体对象和行为,再将实体对象映射到数据持久化对象。

值对象

  • 值对象的定义:通过对象属性值来识别的对象,它将多个相关属性组合为一个概念整体。在 DDD 中用来描述领域的特定方面,并且是一个没有标识符的对象,叫作值对象。

  • 值对象的业务形态:值对象是 DDD 领域模型中的一个基础对象,它跟实体一样都来源于事件风暴所构建的领域模型,都包含了若干个属性,它与实体一起构成聚合。

  • 值对象的代码形态:值对象在代码中有这样两种形态。如果值对象是单一属性,则直接定义为实体类的属性;如果值对象是属性集合,则把它设计为 Class 类,Class 将具有整体概念的多个属性归集到属性集合,这样的值对象没有 ID,会被实体整体引用。

  • 值对象的运行形态:实体实例化后的 DO 对象的业务属性和业务行为非常丰富,但值对象实例化的对象则相对简单和乏味。除了值对象数据初始化和整体替换的行为外,其它业务行为就很少了。值对象嵌入到实体的话,有这样两种不同的数据格式,也可以说是两种方式,分别是属性嵌入的方式和序列化大对象的方式。

  • 值对象的数据库形态:DDD 引入值对象是希望实现从“数据建模为中心”向“领域建模为中心”转变,减少数据库表的数量和表与表之间复杂的依赖关系,尽可能地简化数据库设计,提升数据库性能。

  • 值对象的优势和局限:值对象是一把双刃剑,它的优势是可以简化数据库设计,提升数据库性能。但如果值对象使用不当,它的优势就会很快变成劣势。“知彼知己,方能百战不殆”,你需要理解值对象真正适合的场景。

  • 举个简单的例子,请看下面这张图:
    在这里插入图片描述

  • 人员实体原本包括:姓名、年龄、性别以及人员所在的省、市、县和街道等属性。这样显示地址相关的属性就很零碎了对不对?现在,我们可以将“省、市、县和街道等属性”拿出来构成一个“地址属性集合”,这个集合就是值对象了。
    在这里插入图片描述

在领域建模时,我们可以将部分对象设计为值对象,保留对象的业务涵义,同时又减少了实体的数量;在数据建模时,我们可以将值对象嵌入实体,减少实体表的数量,简化数据库设计。

聚合

  • 领域模型内的实体和值对象就好比个体,而能让实体和值对象协同工作的组织就是聚合,它用来确保这些领域对象在实现共同的业务逻辑时,能保证数据的一致性。
  • 聚合就是由业务和逻辑紧密关联的实体和值对象组合而成的,聚合是数据修改和持久化的基本单元,每一个聚合对应一个仓储,实现数据的持久化。
  • 聚合有一个聚合根和上下文边界,这个边界根据业务单一职责和高内聚原则,定义了聚合内部应该包含哪些实体和值对象,而聚合之间的边界是松耦合的。按照这种方式设计出来的微服务很自然就是“高内聚、低耦合”的。
  • 聚合在 DDD 分层架构里属于领域层,领域层包含了多个聚合,共同实现核心业务逻辑。聚合内实体以充血模型实现个体业务能力,以及业务逻辑的高内聚。跨多个实体的业务逻辑通过领域服务来实现,跨多个聚合的业务逻辑通过应用服务来实现。比如有的业务场景需要同
    一个聚合的 A 和 B 两个实体来共同完成,我们就可以将这段业务逻辑用领域服务来实现;而有的业务逻辑需要聚合 C 和聚合 D 中的两个服务共同完成,这时你就可以用应用服务来组合这两个服务。

聚合根

  • 聚合根的主要目的是为了避免由于复杂数据模型缺少统一的业务规则控制,而导致聚合、实体之间数据不一致性的问题。

如果把聚合比作组织,那聚合根就是这个组织的负责人。聚合根也称为根实体,它不仅是实体,还是聚合的管理者。

  • 首先它作为实体本身,拥有实体的属性和业务行为,实现自身的业务逻辑。
  • 其次它作为聚合的管理者,在聚合内部负责协调实体和值对象按照固定的业务规则协同完成共同的业务逻辑。
  • 最后在聚合之间,它还是聚合对外的接口人,以聚合根 ID 关联的方式接受外部任务和请求,在上下文内实现聚合之间的业务协同。也就是说,聚合之间通过聚合根 ID 关联引用,如果需要访问其它聚合的实体,就要先访问聚合根,再导航到聚合内部实体,外部对象不能直接访问聚合内实体。

设计聚合

  • DDD 领域建模通常采用事件风暴,它通常采用用例分析、场景分析和用户旅程分析等方法,通过头脑风暴列出所有可能的业务行为和事件,然后找出产生这些行为的领域对象,并梳理领域对象之间的关系,找出聚合根,找出与聚合根业务紧密关联的实体和值对象,再将聚合根、实体和值对象组合,构建聚合。

  • 以保险的投保业务场景为例,看一下聚合的构建过程主要都包括哪些步骤。
    在这里插入图片描述

  • 第 1 步:采用事件风暴,根据业务行为,梳理出在投保过程中发生这些行为的所有的实体和值对象,比如投保单、标的、客户、被保人等等。

  • 第 2 步:从众多实体中选出适合作为对象管理者的根实体,也就是聚合根。判断一个实体是否是聚合根,你可以结合以下场景分析:是否有独立的生命周期?是否有全局唯一 ID?是否可以创建或修改其它对象?是否有专门的模块来管这个实体。图中的聚合根分别是投保单和客户实体。

  • 第 3 步:根据业务单一职责和高内聚原则,找出与聚合根关联的所有紧密依赖的实体和值对象。构建出 1 个包含聚合根(唯一)、多个实体和值对象的对象集合,这个集合就是聚合。在图中我们构建了客户和投保这两个聚合。

  • 第 4 步:在聚合内根据聚合根、实体和值对象的依赖关系,画出对象的引用和依赖模型。这里我需要说明一下:投保人和被保人的数据,是通过关联客户 ID 从客户聚合中获取的,在投保聚合里它们是投保单的值对象,这些值对象的数据是客户的冗余数据,即使未来客户聚合的数据发生了变更,也不会影响投保单的值对象数据。从图中我们还可以看出实体之间的引用关系,比如在投保聚合里投保单聚合根引用了报价单实体,报价单实体则引用了报价规则子实体。

  • 第 5 步:多个聚合根据业务语义和上下文一起划分到同一个限界上下文内。

聚合的一些设计原则

  1. 在一致性边界内建模真正的不变条件。聚合用来封装真正的不变性,而不是简单地将对象组合在一起。聚合内有一套不变的业务规则,各实体和值对象按照统一的业务规则运行,实现对象数据的一致性,边界之外的任何东西都与该聚合无关,这就是聚合能实现业务高内聚的原因。
  2. 设计小聚合。如果聚合设计得过大,聚合会因为包含过多的实体,导致实体之间的管理过于复杂,高频操作时会出现并发冲突或者数据库锁,最终导致系统可用性变差。而小聚合设计则可以降低由于业务过大导致聚合重构的可能性,让领域模型更能适应业务的变化。
  3. 通过唯一标识引用其它聚合。聚合之间是通过关联外部聚合根 ID 的方式引用,而不是直接对象引用的方式。外部聚合的对象放在聚合边界内管理,容易导致聚合的边界不清晰,也会增加聚合之间的耦合度。
  4. 在边界之外使用最终一致性。聚合内数据强一致性,而聚合之间数据最终一致性。在一次事务中,最多只能更改一个聚合的状态。如果一次业务操作涉及多个聚合状态的更改,应采用领域事件的方式异步修改相关的聚合,实现聚合之间的解耦。
  5. 通过应用层实现跨聚合的服务调用。为实现微服务内聚合之间的解耦,以及未来以聚合为单位的微服务组合和拆分,应避免跨聚合的领域服务调用和跨聚合的数据库表关联。

聚合、聚合根、实体和值对象它们之间的联系和区别

  • 聚合的特点:高内聚、低耦合,它是领域模型中最底层的边界,可以作为拆分微服务的最小单位,但不建议对微服务过度拆分。但在对性能有极致要求的场景中,聚合可以独立作为一个微服务,以满足版本的高频发布和极致的弹性伸缩能力。
  • 一个微服务可以包含多个聚合,聚合之间的边界是微服务内天然的逻辑边界。有了这个逻辑边界,在微服务架构演进时就可以以聚合为单位进行拆分和组合了,微服务的架构演进也就不再是一件难事了。
  • 聚合根的特点:聚合根是实体,有实体的特点,具有全局唯一标识,有独立的生命周期。一个聚合只有一个聚合根,聚合根在聚合内对实体和值对象采用直接对象引用的方式进行组织和协调,聚合根与聚合根之间通过 ID 关联的方式实现聚合之间的协同。
  • 实体的特点:有 ID 标识,通过 ID 判断相等性,ID 在聚合内唯一即可。状态可变,它依附于聚合根,其生命周期由聚合根管理。实体一般会持久化,但与数据库持久化对象不一定是一对一的关系。实体可以引用聚合内的聚合根、实体和值对象。
  • 值对象的特点:无 ID,不可变,无生命周期,用完即扔。值对象之间通过属性值判断相等性。它的核心本质是值,是一组概念完整的属性组成的集合,用于描述实体的状态和特征。值对象尽量只引用值对象。

你知道的越多,你不知道的越多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/994265.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每日一题(两数相加)

每日一题(两数相加) 2. 两数相加 - 力扣(LeetCode) 思路 思路: 由于链表从头开始向后存储的是低权值位的数据,所以只需要两个指针p1和p2,分别从链表的头节点开始遍历。同时创建一个新的指针new…

记录窗体关闭位置(从窗体上次关闭的位置启动窗体)

从上次关闭位置启动窗体 基础类 using Microsoft.Win32; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Xml.Linq;namespace WindowsFormsApp1 {public class Reg{public static voi…

OpenCV 12(图像直方图)

一、图像直方图 直方图可以让你了解总体的图像像素强度分布,其X轴为像素值(一般范围为0~255),在Y轴上为图像中具有该像素值像素数。 - 横坐标: 图像中各个像素点的灰度级. - 纵坐标: 具有该灰度级的像素个数. 画出上图的直方图: …

算法刷题记录-其他类型(LeetCode)

57 57. Insert Interval 思路 模拟 用指针去扫 intervals,最多可能有三个阶段: 不重叠的绿区间,在蓝区间的左边有重叠的绿区间不重叠的绿区间,在蓝区间的右边 逐个分析 不重叠,需满足:绿区间的右端&…

第 2 章 线性表 ( 双链循环线性表(链式存储结构)实现)

1. 背景说明 2. 示例代码 1) status.h /* DataStructure 预定义常量和类型头文件 */#ifndef STATUS_H #define STATUS_H#define CHECK_NULL(pointer) if (!(pointer)) { \printf("FuncName: %-15s Line: %-5d ErrorCode: %-3d\n", __func__, __LINE__, ERR_NULL_PTR…

2023 年最新Java 毕业设计选题题目参考,500道 Java 毕业设计题目,值得收藏

大家好,我是程序员徐师兄,最近有很多同学咨询,说毕业设计了,不知道选怎么题目好,有哪些是想需要注意的。 确实毕设选题实际上对很多同学来说一个大坑, 每年挖坑给自己跳的人太多太多,选题选得好…

JavaScript关于对象的小挑战

让我们再来看看马克和约翰比较他们的体重指数的情况吧! 这一次,让我们用物体来实现计算! 记住:BMI质量/身高**2质量/(身高*高度)。(质量以公斤为单位,身高以米为单位) 为他们每个人创建一个对象,其属性为全…

MySQL触发器使用指南大全

一、介绍 触发器是与表有关的数据库对象,指在insert/update/delete之前或之后,触发并执行触发器中定义的SQL语句集合。触发器的这种特性可以协助应用在数据库端确保数据的完整性,日志记录,数据校验等操作。 使用别名OLD和NEW来引…

【操作系统实验】进程管理与内存分配模拟程序-含可运行有界面的Python代码

本文是博主之前做的操作系统实验,现在将完整代码和效果图免费放在下面,供大家参考,如果觉得有用,希望大家可以三连关注支持!!!!!! 实验目的 设计编写OS进程…

15. 线性代数 - 克拉默法则

文章目录 克拉默法则矩阵运算Hi,大家好。我是茶桁。 上节课我们在最后提到了一个概念「克拉默法则」,本节课,我们就来看看到底什么是克拉默法则。 克拉默法则 之前的课程我们一直在强调,矩阵是线性方程组抽象的来的。那么既然我们抽象出来了,有没有一种比较好的办法高效…

合宙Air724UG LuatOS-Air LVGL API控件-二维码(Qrcode)

二维码(Qrcode) 示例代码 qrcodelvgl.qrcode_create(lvgl.scr_act(),nil)lvgl.qrcode_set_txt(qrcode,"https://doc.openluat.com/home")lvgl.obj_set_size(qrcode,400,400)lvgl.obj_align(qrcode, nil, lvgl.ALIGN_CENTER, 0, 0)创建 可以通…

496. 下一个更大元素 I

class Solution { public:vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {// 存储numx2右侧第一个比它的元素数值std::unordered_map<int, int> index;std::stack<int> sta;for (int i nums2.size()-1; i &…

uniapp项目实践总结(十四)封装存储和路由方法

导语&#xff1a;在日常 APP 开发过程中&#xff0c;经常要用到数据的存储、获取和删除等操作以及页面导航之间的跳转&#xff0c;为此&#xff0c;封装了一个两个简单的方法来统一调用。 目录 原理分析方法实现实战演练案例展示 原理分析 主要是以下 API。 uni.setStorage…

xcode iOS 在app文件中开启访问 Document Directory

xcode iOS 在app文件中开启访问 Document Directory 在 Plist 中设置 LSSupportsOpeningDocumentsInPlace为 YES 且UIFileSharingEnabled为 YES &#xff08;这个不添加好像也可以&#xff09; 可以从系统的Files应用中访问应用的 Documents 目录 电脑 助手也可以访问 开…

视频号挂公众号链接最新教程方法,赶紧来看

玩视频号的朋友&#xff0c;尤其是靠挂公众号引流的朋友&#xff0c;肯定心里非常清楚&#xff0c;就在八月初&#xff0c;视频号放大招了&#xff0c;可以说这个大招是完全把公众号的路给堵死了&#xff0c;视频号出了什么新规呢&#xff0c;大家来看看。 第一个规则是&#…

无涯教程-JavaScript - IMTAN函数

描述 IMTAN函数以x yi或x yj文本格式返回复数的切线。复数的切线由以下公式计算- tan(z)正弦(z)/cos(z) 语法 IMTAN (inumber)争论 Argument描述Required/OptionalInumberA complex number for which you want the tangent.Required Notes Excel中的复数仅存储为文本。…

最新keil安装出现的无数问题记录及解决办法

报错问题现象如下&#xff1a; *** Target Target 1 uses ARM-Compiler Default Compiler Version 5 which is not available. 安装最新keil 5 出现无数个问题。 我使用GD32去跑&#xff0c;或者STM32去跑&#xff0c;都是这个问题。 一、我先解决了GD32的问题&#xff1a;…

阻塞队列学习总结

ArrayBlockingQueue&#xff1a;一个由数组结构组成的有界阻塞队列。 LinkedBlockingQueue&#xff1a;一个由链表结构组成的有界阻塞队列。 PriorityBlockingQueue&#xff1a;一个支持优先级排序的无界阻塞队列。 DelayQueue&#xff1a;一个使用优先级队列实现的延迟无界…

分库分表实战

数据分片与分片算法 分库分表的第一性原理&#xff0c;那就是&#xff1a;存储容量和性能容量。只有对核心业务表才会精心进行分库分表的设计。 首先我们了解一下数据分片是什么意思&#xff1f; 本质上的分库分表不就是数据分片吗&#xff1f;定义就是&#xff1a;按照某个…

BBR 带宽估计的延后累加

一个关于时延统计分布的小测试&#xff0c;用 netem delay jitter distribution pareto 模拟&#xff0c;得到下面的结果&#xff1a; netem 的 jitter 并不是真 jitter&#xff0c;只是通过延时阻滞部分报文模拟 jitter&#xff0c;对保序流而言&#xff0c;就表现为乱序&am…