【LeetCode题目详解】第九章 动态规划part09 198.打家劫舍 213.打家劫舍II 337.打家劫舍III(day48补)

news2024/11/25 12:57:22

本文章代码以c++为例!

一、力扣第198题:打家劫舍

题目:

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入:[2,7,9,3,1]
输出:12
解释:偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 400

思路

大家如果刚接触这样的题目,会有点困惑,当前的状态我是偷还是不偷呢?

仔细一想,当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。

所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。

当然以上是大概思路,打家劫舍是dp解决的经典问题,接下来我们来动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]

  1. 确定递推公式

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

  1. dp数组如何初始化

从递推公式dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);可以看出,递推公式的基础就是dp[0] 和 dp[1]

从dp[i]的定义上来讲,dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);

代码如下:

vector<int> dp(nums.size());
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
  1. 确定遍历顺序

dp[i] 是根据dp[i - 2] 和 dp[i - 1] 推导出来的,那么一定是从前到后遍历!

代码如下:

for (int i = 2; i < nums.size(); i++) {
    dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
  1. 举例推导dp数组

以示例二,输入[2,7,9,3,1]为例。

198.打家劫舍

红框dp[nums.size() - 1]为结果。

以上分析完毕,C++代码如下:

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        vector<int> dp(nums.size());
        dp[0] = nums[0];
        dp[1] = max(nums[0], nums[1]);
        for (int i = 2; i < nums.size(); i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[nums.size() - 1];
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

# 总结

打家劫舍是DP解决的经典题目,这道题也是打家劫舍入门级题目,后面我们还会变种方式来打劫的。

二、力扣第213题:打家劫舍 II

题目:

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 3:

输入:nums = [1,2,3]
输出:3

提示:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 1000

思路

这道题目和198.打家劫舍

(opens new window)是差不多的,唯一区别就是成环了。

对于一个数组,成环的话主要有如下三种情况:

  • 情况一:考虑不包含首尾元素

213.打家劫舍II

  • 情况二:考虑包含首元素,不包含尾元素

213.打家劫舍II1

  • 情况三:考虑包含尾元素,不包含首元素

213.打家劫舍II2

注意我这里用的是"考虑",例如情况三,虽然是考虑包含尾元素,但不一定要选尾部元素! 对于情况三,取nums[1] 和 nums[3]就是最大的。

而情况二 和 情况三 都包含了情况一了,所以只考虑情况二和情况三就可以了

分析到这里,本题其实比较简单了。 剩下的和198.打家劫舍

(opens new window)就是一样的了。

代码如下:

// 注意注释中的情况二情况三,以及把198.打家劫舍的代码抽离出来了
class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];
        int result1 = robRange(nums, 0, nums.size() - 2); // 情况二
        int result2 = robRange(nums, 1, nums.size() - 1); // 情况三
        return max(result1, result2);
    }
    // 198.打家劫舍的逻辑
    int robRange(vector<int>& nums, int start, int end) {
        if (end == start) return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
        }
        return dp[end];
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(n)

# 总结

成环之后还是难了一些的, 不少题解没有把“考虑房间”和“偷房间”说清楚。

这就导致大家会有这样的困惑:情况三怎么就包含了情况一了呢? 本文图中最后一间房不能偷啊,偷了一定不是最优结果。

所以我在本文重点强调了情况一二三是“考虑”的范围,而具体房间偷与不偷交给递推公式去抉择。

这样大家就不难理解情况二和情况三包含了情况一了。

三、力扣第337题:打家劫舍 III

题目:

小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为 root 。

除了 root 之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果 两个直接相连的房子在同一天晚上被打劫 ,房屋将自动报警。

给定二叉树的 root 。返回 在不触动警报的情况下 ,小偷能够盗取的最高金额 。

示例 1:

输入: root = [3,2,3,null,3,null,1]
输出: 7 
解释: 小偷一晚能够盗取的最高金额 3 + 3 + 1 = 7

示例 2:

输入: root = [3,4,5,1,3,null,1]
输出: 9
解释: 小偷一晚能够盗取的最高金额 4 + 5 = 9

提示:

  • 树的节点数在 [1, 104] 范围内
  • 0 <= Node.val <= 104

思路

这道题目和 198.打家劫舍

(opens new window),213.打家劫舍II

(opens new window)也是如出一辙,只不过这个换成了树。

如果对树的遍历不够熟悉的话,那本题就有难度了。

对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。

本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算

与198.打家劫舍,213.打家劫舍II一样,关键是要讨论当前节点抢还是不抢。

如果抢了当前节点,两个孩子就不能动,如果没抢当前节点,就可以考虑抢左右孩子(注意这里说的是“考虑”

# 暴力递归

代码如下:

class Solution {
public:
    int rob(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right == NULL) return root->val;
        // 偷父节点
        int val1 = root->val;
        if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left,相当于不考虑左孩子了
        if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right,相当于不考虑右孩子了
        // 不偷父节点
        int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
        return max(val1, val2);
    }
};
  • 时间复杂度:O(n^2),这个时间复杂度不太标准,也不容易准确化,例如越往下的节点重复计算次数就越多
  • 空间复杂度:O(log n),算上递推系统栈的空间

当然以上代码超时了,这个递归的过程中其实是有重复计算了。

我们计算了root的四个孙子(左右孩子的孩子)为头结点的子树的情况,又计算了root的左右孩子为头结点的子树的情况,计算左右孩子的时候其实又把孙子计算了一遍。

# 记忆化递推

所以可以使用一个map把计算过的结果保存一下,这样如果计算过孙子了,那么计算孩子的时候可以复用孙子节点的结果。

代码如下:

class Solution {
public:
    unordered_map<TreeNode* , int> umap; // 记录计算过的结果
    int rob(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right == NULL) return root->val;
        if (umap[root]) return umap[root]; // 如果umap里已经有记录则直接返回
        // 偷父节点
        int val1 = root->val;
        if (root->left) val1 += rob(root->left->left) + rob(root->left->right); // 跳过root->left
        if (root->right) val1 += rob(root->right->left) + rob(root->right->right); // 跳过root->right
        // 不偷父节点
        int val2 = rob(root->left) + rob(root->right); // 考虑root的左右孩子
        umap[root] = max(val1, val2); // umap记录一下结果
        return max(val1, val2);
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(log n),算上递推系统栈的空间

# 动态规划

在上面两种方法,其实对一个节点 偷与不偷得到的最大金钱都没有做记录,而是需要实时计算。

而动态规划其实就是使用状态转移容器来记录状态的变化,这里可以使用一个长度为2的数组,记录当前节点偷与不偷所得到的的最大金钱。

这道题目算是树形dp的入门题目,因为是在树上进行状态转移,我们在讲解二叉树的时候说过递归三部曲,那么下面我以递归三部曲为框架,其中融合动规五部曲的内容来进行讲解

  1. 确定递归函数的参数和返回值

这里我们要求一个节点 偷与不偷的两个状态所得到的金钱,那么返回值就是一个长度为2的数组。

参数为当前节点,代码如下:

vector<int> robTree(TreeNode* cur) {

其实这里的返回数组就是dp数组。

所以dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

所以本题dp数组就是一个长度为2的数组!

那么有同学可能疑惑,长度为2的数组怎么标记树中每个节点的状态呢?

别忘了在递归的过程中,系统栈会保存每一层递归的参数

如果还不理解的话,就接着往下看,看到代码就理解了哈。

  1. 确定终止条件

在遍历的过程中,如果遇到空节点的话,很明显,无论偷还是不偷都是0,所以就返回

if (cur == NULL) return vector<int>{0, 0};

这也相当于dp数组的初始化

  1. 确定遍历顺序

首先明确的是使用后序遍历。 因为要通过递归函数的返回值来做下一步计算。

通过递归左节点,得到左节点偷与不偷的金钱。

通过递归右节点,得到右节点偷与不偷的金钱。

代码如下:

// 下标0:不偷,下标1:偷
vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右
// 中

  1. 确定单层递归的逻辑

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}

代码如下:

vector<int> left = robTree(cur->left); // 左
vector<int> right = robTree(cur->right); // 右

// 偷cur
int val1 = cur->val + left[0] + right[0];
// 不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
  1. 举例推导dp数组

以示例1为例,dp数组状态如下:(注意用后序遍历的方式推导

最后头结点就是 取下标0 和 下标1的最大值就是偷得的最大金钱

递归三部曲与动规五部曲分析完毕,C++代码如下:

class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    // 长度为2的数组,0:不偷,1:偷
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        // 偷cur,那么就不能偷左右节点。
        int val1 = cur->val + left[0] + right[0];
        // 不偷cur,那么可以偷也可以不偷左右节点,则取较大的情况
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};
  • 时间复杂度:O(n),每个节点只遍历了一次
  • 空间复杂度:O(log n),算上递推系统栈的空间

# 总结

这道题是树形DP的入门题目,通过这道题目大家应该也了解了,所谓树形DP就是在树上进行递归公式的推导。

所以树形DP也没有那么神秘!

只不过平时我们习惯了在一维数组或者二维数组上推导公式,一下子换成了树,就需要对树的遍历方式足够了解!

大家还记不记得我在讲解贪心专题的时候,讲到这道题目:贪心算法:我要监控二叉树!

(opens new window),这也是贪心算法在树上的应用。那我也可以把这个算法起一个名字,叫做树形贪心,哈哈哈

“树形贪心”词汇从此诞生

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/993583.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【再识C进阶2(中)】详细介绍指针的进阶——函数指针数组、回调函数、qsort函数

前言 &#x1f493;作者简介&#xff1a; 加油&#xff0c;旭杏&#xff0c;目前大二&#xff0c;正在学习C&#xff0c;数据结构等&#x1f440; &#x1f493;作者主页&#xff1a;加油&#xff0c;旭杏的主页&#x1f440; ⏩本文收录在&#xff1a;再识C进阶的专栏&#x1…

开开心心带你学习MySQL数据库之第七篇

MySQL提供的约束 1.not null 2.unique 3.default 4.primary key 5.foreign key 表的设计 找到实体确定实体间的关系 一对一一对多多对多 聚合查询 ~~行之间的运算 ~~聚合函数 ~~分组group by 联合查询 ~~多表查询 ~~笛卡尔积: 把两个表放到一起进行排列组合 班级表 cla…

代码随想录 -- day45 -- 70. 爬楼梯 (进阶)、322. 零钱兑换 、279.完全平方数

70. 爬楼梯 &#xff08;进阶&#xff09; 这里要注意&#xff0c;这是一个排列组合的问题&#xff0c;所以要先遍历背包再遍历物品 dp[i]&#xff1a;爬到有i个台阶的楼顶&#xff0c;有dp[i]种方法 递推公式为&#xff1a;dp[i] dp[i - j] class Solution { public:int c…

基于51单片机万年历电压电流检测-proteus仿真-源程序

一、系统方案 本设计采用52单片机作为主控器&#xff0c;液晶1602显示&#xff0c;DS1302时钟检测&#xff0c;电流电压检测、按键设置报警&#xff0c;蜂鸣器报警。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 /lcd1602初始化设置*/ vo…

Java中什么是序列化,哪里有所应用

文章目录 一、简介1.1 本文介绍Java中的序列化技术1.2 阐述序列化的应用场景 二、Java序列化概述2.1 序列化定义2.2 序列化特征2.3 序列化机制 三、Java序列化使用3.1 实现Serializable接口3.2 transient关键字3.3 自定义序列化策略 四、Java序列化应用4.1 对象状态持久化4.2 网…

RCP系列-第一章 环境安装

RCP系列文章 第一章 Matlab安装 Matlab安装 RCP系列文章前言一、Matlab 获取二、安装1.解压2.打开解压后的文件夹中的【R2018b_win64】文件夹3.鼠标右击【setup】选择【以管理员身份运行】4.选择【使用文件安装密钥】&#xff0c;点击【下一步】5.选择【是】&#xff0c;点击【…

图像处理算法实战【1】超详细整理 | 新手入门实用指南 | 图像处理基础

1. 什么是图像 & 图像在计算机中如何存储&#xff1f;2. 图像可分为哪些类型&#xff1f; 2.1. 二值(黑白)图像2.2. 灰度图像2.3. RGB彩色图像2.4. RGBA图像 3. 什么是图像通道&#xff1f;4. 图像处理 4.1. 什么是图像处理&#xff1f;4.2. 图像处理流程4.3. 图像处理技术…

王道考研计算机网络

文章目录 计算机网络体系结构计算机网络概述计算机网络的性能指标 计算机网络体系结构与参考模型错题 物理层通信基础基础概念奈奎斯特定理和香农定理编码与调制电路交换、报文交换和分组交换数据报与虚电路 传输介质物理层设备错题 数据链路层数据链路层的功能组帧差错控制检错…

SpringSecurity一日干

前后端登录校验的逻辑 完整流程 本质就是过滤器链 1&#xff0c;提交用户名和密码 2&#xff0c;将提交的信息封装Authentication对象 3&#xff0c;传给下一个&#xff0c;调用2中的authenticate方法进行验证 4&#xff0c;3步骤也验证不了需要调用3的authenticate方法…

概念解析 | 揭秘视觉与语言交叉模型:CLIP和BLIP的介绍

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:CLIP和BLIP模型。 揭秘视觉与语言交叉模型:CLIP和BLIP的介绍 🎯 [LB: 0.45836] ~ BLIP+CLIP | CLIP Interrogator | Kaggle 大纲: 背景介绍原理介绍和推导 CLIP模型BLIP模…

简易yum仓库搭建

目录 一、实验准备 二、获取yum仓库、安装httpd 三、客户机配置yum源 四、测试、验证 一、实验准备 准备两台主机&#xff1a; 192.168.115.148 &#xff1a;安装http 、作为yum仓库、挂载默认光盘 192.168.115.148 &#xff1a;作为客户机使用yum仓库、不挂载光盘 二、…

Dominosa/数邻(1) | C++ | 结构体和类

这里是目录 一、背景介绍二、题目描述三、Dominosa 的技巧&#xff1f;四、编程思路五、完整代码六、补充 一、背景介绍 你玩过骨牌吗&#xff1f;至少你一定听说过或者亲眼见过多米诺骨牌&#xff0c;而多米诺骨牌就发展自骨牌&#xff0c;这是一种古老的游戏&#xff0c;而我…

【Linux】VirtualBox安装Centos7

文章目录 下载并安装VirtualBox下载Centos镜像VirtualBox设置管理->全局设定&#xff1a;设定虚拟机默认安装路径工具->网络管理器&#xff1a;添加NetWork网络配置 VirtualBox安装CentOS7新建虚拟机&#xff0c;指定安装目录及名称&#xff0c;点击下一步指定虚拟机内存…

记录征战Mini开发板从无到有(二)

接上一篇&#xff0c;原理图设计完成后&#xff0c;就要画PCB图了。因为PCB直接影响板子的性能&#xff0c;所以决定花钱找一博科技的资深工程师来布板。布板效果非常好&#xff0c;细节处理得很到位&#xff0c;真的是专业的人干专业的事&#xff0c;话不多说&#xff0c;来欣…

无涯教程-JavaScript - OCT2BIN函数

描述 OCT2BIN函数将八进制数转换为二进制数。 语法 OCT2BIN (number, [places])争论 Argument描述Required/OptionalNumber 您要转换的八进制数。 数字不能超过10个字符。数字的最高有效位是符号位。其余的29位是幅度位。 负数使用二进制补码表示。 RequiredPlaces 要使用的…

python library reference

文章目录 1. 标准库2. Python标准库介绍3. 示例 1. 标准库 https://docs.python.org/zh-cn/3/library/ https://pypi.org/ https://pypi.org/search/ 2. Python标准库介绍 Python 语言参考手册 描述了 Python 语言的具体语法和语义&#xff0c;这份库参考则介绍了与 Pytho…

【多线程】线程安全 问题

线程安全 问题 一. 线程不安全的典型例子二. 线程安全的概念三. 线程不安全的原因1. 线程调度的抢占式执行2. 修改共享数据3. 原子性4. 内存可见性5. 指令重排序 一. 线程不安全的典型例子 class ThreadDemo {static class Counter {public int count 0;void increase() {cou…

openpnp - 二手西门子电动飞达的测试

文章目录 二手西门子电动飞达的初步测试概述飞达正常的判断标准先挑出一个手工控制好使的二手飞达用于测试.推料的手工检测扒皮的手工检测飞达测试的接线通讯的测试用串口助手测试通讯先看看是否发送给飞达的管脚是自己接的那个查看所有可以用到的上位机通讯命令M115 - 打印固件…

蓝桥杯官网练习题(颠倒的价牌)

题目描述 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 小李的店里专卖其它店中下架的样品电视机&#xff0c;可称为&#xff1a;样品电视专卖店。 其标价都是 4 位数字&#xff08;即千元不等&#xff09;。 小李为了标…

BWMT的思考

从bw4开始&#xff0c;sap把建模的功能从系统的rsa1移除&#xff0c;改成BWMT的客户端。以前对java开发的eclipse不是很喜欢&#xff0c;总有点排斥。今天突然好像明白sap为啥要这样做&#xff1f; 1 最重要的是减少数据库的数据量和系统的负荷。把这种开发工作的程序和功能放在…