多元线性回归:
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
if __name__ == '__main__':
X1 =[12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,
2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8,
29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,
11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59]
X2 =[29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,
11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59,
12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,
2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8]
Y= []
for i in range(len(X1)):
Y.append(2 * X1[i] +3*X2[i]+ 5)
# for i in range(1):
X1.append(4.5)
X1.append(15)
X2.append(10)
X2.append(20)
Y.append(100)
Y.append(10)
#特征缩放
X1_train=[]
X2_train=[]
for i in range(len(X1)):
X1_train.append(X1[i]/(max(X1)-min(X1)))
X2_train.append(X2[i] / (max(X2) - min(X2)))
w1=1
w2=-1
b=2
a=0.001 # 学习率
lda=1 #正则化参数
w1_temp=-100
w2_temp = -100
b_temp=-100
w1change = 100
w2change = 100
bchange = 100
while abs(w1change)>1e-12 and abs(w2change)>1e-12 and abs(bchange)>1e-12:
print(w1change)
w1change=0
w2change=0
bchange=0
for i in range(len(X1)):
w1change+=(w1*X1[i]+w2*X2[i]+b-Y[i])*X1[i]+lda*w1
w2change += (w1 * X1[i] + w2 * X2[i] + b - Y[i]) * X2[i]+lda*w2
bchange+=w1*X1[i]+ w2 * X2[i]+b-Y[i]
w1change/=len(X1)
w2change /= len(X2)
bchange /= len(X1)
w1_temp=w1-a*w1change
w2_temp = w2 - a * w2change
b_temp=b-a*bchange
w1=w1_temp
w2 = w2_temp
b=b_temp
print("y=%.4f*x1+%.4f*x2+%.4f" % (w1,w2, b))
# 创建网格点
x = np.linspace(0, 50, 100)
y = np.linspace(0, 50, 100)
X_point, Y_point = np.meshgrid(x, y)
# 计算对应的Z值
Z =w1*X_point+w2*Y_point+b
# 创建三维图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 绘制二元函数曲面
ax.plot_surface(X_point, Y_point, Z, cmap='viridis')
# 绘制点
points = []
for i in range(len(X1)):
points.append((X1[i],X2[i],Y[i]))
for point in points:
ax.scatter(point[0], point[1], point[2], color='red')
# 添加标签和标题
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('3D Plot')
# 显示图形
plt.show()
效果还不错。
逻辑回归中加入噪声:
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
def f(w1,x1,w2,x2,b):
z=w1*x1+w2*x2+b
return 1/(1+np.exp(-z))
if __name__ == '__main__':
X1 =[12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,
2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8,
29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,
11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59]
X2 =[29.01, 4.7, 22.33, 24.99, 18.85, 14.89, 10.58, 36.84, 42.36, 39.73,
11.92, 7.45, 22.9, 36.62, 16.04, 16.56, 31.55, 20.04, 35.26, 23.59,
12.46, 0.25, 5.22, 11.3, 6.81, 4.59, 0.66, 14.53, 15.49, 14.43,
2.19, 1.35, 10.02, 12.93, 5.93, 2.92, 12.81, 4.88, 13.11, 5.8]
Y= []
for i in range(len(X1)):
if X1[i]+X2[i]<20:Y.append(0)
else:Y.append(1);
#制造噪声
for i in range(2):
if Y[3*i+1]==1:Y[3*i+1]=0
else:Y[3*i+1]=1
w1=1
w2=-1
b=2
a=5 # 学习率
lda=0.01 #正则化参数
w1_temp=-100
w2_temp = -100
b_temp=-100
w1change = 100
w2change = 100
bchange = 100
while abs(w1change)>1e-6 and abs(w2change)>1e-6 and abs(bchange)>1e-6:
print(w1change)
w1change=0
w2change=0
bchange=0
for i in range(len(X1)):
w1change+=(f(w1,X1[i],w2,X2[i],b)-Y[i])*X1[i]+lda*w1
w2change += (f(w1,X1[i],w2,X2[i],b) - Y[i]) * X2[i]+lda*w2
bchange+=(f(w1,X1[i],w2,X2[i],b) - Y[i])
w1change/=len(X1)
w2change /= len(X2)
bchange /= len(X1)
w1_temp=w1-a*w1change
w2_temp = w2 - a * w2change
b_temp=b-a*bchange
w1=w1_temp
w2 = w2_temp
b=b_temp
print("y=%.4f*x1+%.4f*x2+%.4f" % (w1,w2, b))
print(Y)
X1_1 = []
X1_2 = []
X2_1 = []
X2_2 = []
for i in range(len(X1)):
if(Y[i]==0):
X1_1.append(X1[i])
X2_1.append(X2[i])
else:
X1_2.append(X1[i])
X2_2.append(X2[i])
print(X1_1)
# 简单画图显示
plt.scatter(X1_1, X2_1, c="blue")
plt.scatter(X1_2, X2_2, c="red")
x = np.linspace(0, 40, 200) # 在0到50之间生成100个等间距的值
y=(w1*x+b)/(-w2)
plt.plot(x,y)
plt.show()
额,想用多项式优化一下逻辑回归结果跑不出来,很离谱。
如果不正则化的话,对训练集的拟合效果会更好一些。