ELK高级搜索(四)

news2024/11/29 8:52:10

文章目录

    • 16.评分机制详解
      • 16.1 评分机制 TF\IDF
      • 16.2 Doc value
      • 16.3 query phase
      • 16.4 fetch phase
      • 16.5 搜索参数小总结
    • 17.聚合入门
      • 17.1 聚合示例
      • 17.2 bucket和metric
      • 17.3 电视案例
    • 18.java api实现聚合
    • 19.es7 sql新特性
      • 19.1 快速入门
      • 19.2 启动方式
      • 19.3 显示方式
      • 19.4 sql 翻译
      • 19.5 与其他DSL结合
      • 19.6 java代码实现sql功能
    • 20.Logstash学习
      • 20.1 基本语法组成
      • 20.2 输入插件(input)
      • 20.3 过滤器插件(Filter)
      • 20.4 输出插件(output)
      • 20.5 综合案例
    • 21.kibana学习
      • 21.1 基本查询
      • 21.2 可视化
      • 21.3 仪表盘
      • 21.4 使用模板数据指导绘图
      • 21.5 其他功能
    • 22.集群部署
    • 23.项目实战
      • 23.1 项目一:ELK用于日志分析
      • 23.2 项目二:学成在线站内搜索

16.评分机制详解

16.1 评分机制 TF\IDF

16.1.1 算法介绍

relevance score算法,就是计算出一个索引中的文本,与搜索文本,他们之间的关联匹配程度。

Elasticsearch使用的是 term frequency/inverse document frequency算法,简称为TF/IDF算法。TF词频(Term Frequency),IDF逆向文件频率(Inverse Document Frequency)

Term frequency

搜索文本中的各个词条在field文本中出现了多少次,出现次数越多,就越相关。

在这里插入图片描述

举例:搜索请求:hello world

doc1 : hello you and me,and world is very good.

doc2 : hello,how are you

Inverse document frequency

搜索文本中的各个词条在整个索引的所有文档中出现了多少次,出现的次数越多,就越不相关.

在这里插入图片描述

在这里插入图片描述

举例:搜索请求:hello world

doc1 : hello ,today is very good

doc2 : hi world ,how are you

整个index中1亿条数据。hello的document 1000个,有world的document 有100个。

doc2 更相关

Field-length norm

field长度,field越长,相关度越弱

举例:搜索请求:hello world

doc1 : {“title”:“hello article”,"content ":“balabalabal 1万个”}

doc2 : {“title”:“my article”,"content ":“balabalabal 1万个,world”}

16.1.2 _score是如何被计算出来的

GET /book/_search?explain=true
{
  "query": {
    "match": {
      "description": "java程序员"
    }
  }
}

返回

{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 2.137549,
    "hits" : [
      {
        "_shard" : "[book][0]",
        "_node" : "MDA45-r6SUGJ0ZyqyhTINA",
        "_index" : "book",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 2.137549,
        "_source" : {
          "name" : "spring开发基础",
          "description" : "spring 在java领域非常流行,java程序员都在用。",
          "studymodel" : "201001",
          "price" : 88.6,
          "timestamp" : "2019-08-24 19:11:35",
          "pic" : "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg",
          "tags" : [
            "spring",
            "java"
          ]
        },
        "_explanation" : {
          "value" : 2.137549,
          "description" : "sum of:",
          "details" : [
            {
              "value" : 0.7936629,
              "description" : "weight(description:java in 0) [PerFieldSimilarity], result of:",
              "details" : [
                {
                  "value" : 0.7936629,
                  "description" : "score(freq=2.0), product of:",
                  "details" : [
                    {
                      "value" : 2.2,
                      "description" : "boost",
                      "details" : [ ]
                    },
                    {
                      "value" : 0.47000363,
                      "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details" : [
                        {
                          "value" : 2,
                          "description" : "n, number of documents containing term",
                          "details" : [ ]
                        },
                        {
                          "value" : 3,
                          "description" : "N, total number of documents with field",
                          "details" : [ ]
                        }
                      ]
                    },
                    {
                      "value" : 0.7675597,
                      "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details" : [
                        {
                          "value" : 2.0,
                          "description" : "freq, occurrences of term within document",
                          "details" : [ ]
                        },
                        {
                          "value" : 1.2,
                          "description" : "k1, term saturation parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 0.75,
                          "description" : "b, length normalization parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 12.0,
                          "description" : "dl, length of field",
                          "details" : [ ]
                        },
                        {
                          "value" : 35.333332,
                          "description" : "avgdl, average length of field",
                          "details" : [ ]
                        }
                      ]
                    }
                  ]
                }
              ]
            },
            {
              "value" : 1.3438859,
              "description" : "weight(description:程序员 in 0) [PerFieldSimilarity], result of:",
              "details" : [
                {
                  "value" : 1.3438859,
                  "description" : "score(freq=1.0), product of:",
                  "details" : [
                    {
                      "value" : 2.2,
                      "description" : "boost",
                      "details" : [ ]
                    },
                    {
                      "value" : 0.98082924,
                      "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details" : [
                        {
                          "value" : 1,
                          "description" : "n, number of documents containing term",
                          "details" : [ ]
                        },
                        {
                          "value" : 3,
                          "description" : "N, total number of documents with field",
                          "details" : [ ]
                        }
                      ]
                    },
                    {
                      "value" : 0.6227967,
                      "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details" : [
                        {
                          "value" : 1.0,
                          "description" : "freq, occurrences of term within document",
                          "details" : [ ]
                        },
                        {
                          "value" : 1.2,
                          "description" : "k1, term saturation parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 0.75,
                          "description" : "b, length normalization parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 12.0,
                          "description" : "dl, length of field",
                          "details" : [ ]
                        },
                        {
                          "value" : 35.333332,
                          "description" : "avgdl, average length of field",
                          "details" : [ ]
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      },
      {
        "_shard" : "[book][0]",
        "_node" : "MDA45-r6SUGJ0ZyqyhTINA",
        "_index" : "book",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.57961315,
        "_source" : {
          "name" : "java编程思想",
          "description" : "java语言是世界第一编程语言,在软件开发领域使用人数最多。",
          "studymodel" : "201001",
          "price" : 68.6,
          "timestamp" : "2019-08-25 19:11:35",
          "pic" : "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg",
          "tags" : [
            "java",
            "dev"
          ]
        },
        "_explanation" : {
          "value" : 0.57961315,
          "description" : "sum of:",
          "details" : [
            {
              "value" : 0.57961315,
              "description" : "weight(description:java in 0) [PerFieldSimilarity], result of:",
              "details" : [
                {
                  "value" : 0.57961315,
                  "description" : "score(freq=1.0), product of:",
                  "details" : [
                    {
                      "value" : 2.2,
                      "description" : "boost",
                      "details" : [ ]
                    },
                    {
                      "value" : 0.47000363,
                      "description" : "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                      "details" : [
                        {
                          "value" : 2,
                          "description" : "n, number of documents containing term",
                          "details" : [ ]
                        },
                        {
                          "value" : 3,
                          "description" : "N, total number of documents with field",
                          "details" : [ ]
                        }
                      ]
                    },
                    {
                      "value" : 0.56055,
                      "description" : "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                      "details" : [
                        {
                          "value" : 1.0,
                          "description" : "freq, occurrences of term within document",
                          "details" : [ ]
                        },
                        {
                          "value" : 1.2,
                          "description" : "k1, term saturation parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 0.75,
                          "description" : "b, length normalization parameter",
                          "details" : [ ]
                        },
                        {
                          "value" : 19.0,
                          "description" : "dl, length of field",
                          "details" : [ ]
                        },
                        {
                          "value" : 35.333332,
                          "description" : "avgdl, average length of field",
                          "details" : [ ]
                        }
                      ]
                    }
                  ]
                }
              ]
            }
          ]
        }
      }
    ]
  }
}

16.1.3 分析一个document是如何被匹配上的

GET /book/_explain/3
{
  "query": {
    "match": {
      "description": "java程序员"
    }
  }
}

16.2 Doc value

搜索的时候,要依靠倒排索引;排序的时候,需要依靠正排索引,看到每个document的每个field,然后进行排序,所谓的正排索引,其实就是doc values

在建立索引的时候,一方面会建立倒排索引,以供搜索用;一方面会建立正排索引,也就是doc values,以供排序,聚合,过滤等操作使用

doc values是被保存在磁盘上的,此时如果内存足够,os会自动将其缓存在内存中,性能还是会很高;如果内存不足够,os会将其写入磁盘上

倒排索引

doc1: hello world you and me

doc2: hi, world, how are you

termdoc1doc2
hello*
world**
you**
and*
me*
hi*
how*
are*

搜索时:

hello you --> hello, you

hello --> doc1

you --> doc1,doc2

doc1: hello world you and me

doc2: hi, world, how are you

sort by 出现问题

正排索引

doc1: { “name”: “jack”, “age”: 27 }

doc2: { “name”: “tom”, “age”: 30 }

documentnameage
doc1jack27
doc2tom30

16.3 query phase

1、query phase

(1)搜索请求发送到某一个coordinate node,构构建一个priority queue,长度以paging操作from和size为准,默认为10

(2)coordinate node将请求转发到所有shard,每个shard本地搜索,并构建一个本地的priority queue

(3)各个shard将自己的priority queue返回给coordinate node,并构建一个全局的priority queue

2、replica shard如何提升搜索吞吐量

一次请求要打到所有shard的一个replica/primary上去,如果每个shard都有多个replica,那么同时并发过来的搜索请求可以同时打到其他的replica上去

16.4 fetch phase

1、fetch phbase工作流程

(1)coordinate node构建完priority queue之后,就发送mget请求去所有shard上获取对应的document

(2)各个shard将document返回给coordinate node

(3)coordinate node将合并后的document结果返回给client客户端

2、一般搜索,如果不加from和size,就默认搜索前10条,按照_score排序

16.5 搜索参数小总结

1、preference

决定了哪些shard会被用来执行搜索操作

_primary, _primary_first, _local, _only_node:xyz, _prefer_node:xyz, _shards:2,3

bouncing results问题,两个document排序,field值相同;不同的shard上,可能排序不同;每次请求轮询打到不同的replica shard上;每次页面上看到的搜索结果的排序都不一样。这就是bouncing result,也就是跳跃的结果。

搜索的时候,是轮询将搜索请求发送到每一个replica shard(primary shard),但是在不同的shard上,可能document的排序不同

解决方案:将preference设置为一个字符串,比如说user_id,让每个user每次搜索的时候,都使用同一个replica shard去执行,就不会看到bouncing results

GET /_search?preference=_shards:2,3

2、timeout

已经讲解过原理了,主要就是限定在一定时间内,将部分获取到的数据直接返回,避免查询耗时过长

GET /_search?timeout=10ms

3、routing

document文档路由,_id路由,routing=user_id,这样的话可以让同一个user对应的数据到一个shard上去

GET /_search?routing=user123

4、search_type

default:query_then_fetch

dfs_query_then_fetch,可以提升revelance sort精准度

17.聚合入门

17.1 聚合示例

17.1.1 需求:计算每个studymodel下的商品数量

sql语句: select studymodel,count(*) from book group by studymodel

GET /book/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  }, 
  "aggs": {
    "group_by_model": {
      "terms": { "field": "studymodel" }
    }
  }
}

17.1.2 需求:计算每个tags下的商品数量

设置字段"fielddata": true

PUT /book/_mapping/
{
  "properties": {
    "tags": {
      "type": "text",
      "fielddata": true
    }
  }
}

查询

GET /book/_search
{
  "size": 0, 
  "query": {
    "match_all": {}
  }, 
  "aggs": {
    "group_by_tags": {
      "terms": { "field": "tags" }
    }
  }
}

17.1.3 需求:加上搜索条件,计算每个tags下的商品数量

GET /book/_search
{
  "size": 0, 
  "query": {
    "match": {
      "description": "java程序员"
    }
  }, 
  "aggs": {
    "group_by_tags": {
      "terms": { "field": "tags" }
    }
  }
}

17.1.4 需求:先分组,再算每组的平均值,计算每个tag下的商品的平均价格

GET /book/_search
{
    "size": 0,
    "aggs" : {
        "group_by_tags" : {
            "terms" : { 
              "field" : "tags" 
            },
            "aggs" : {
                "avg_price" : {
                    "avg" : { "field" : "price" }
                }
            }
        }
    }
}

17.1.5 需求:计算每个tag下的商品的平均价格,并且按照平均价格降序排序

GET /book/_search
{
    "size": 0,
    "aggs" : {
        "group_by_tags" : {
            "terms" : { 
              "field" : "tags",
              "order": {
                "avg_price": "desc"
              }
            },
            "aggs" : {
                "avg_price" : {
                    "avg" : { "field" : "price" }
                }
            }
        }
    }
}

17.1.6 需求:按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格

GET /book/_search
{
  "size": 0,
  "aggs": {
    "group_by_price": {
      "range": {
        "field": "price",
        "ranges": [
          {
            "from": 0,
            "to": 40
          },
          {
            "from": 40,
            "to": 60
          },
          {
            "from": 60,
            "to": 80
          }
        ]
      },
      "aggs": {
        "group_by_tags": {
          "terms": {
            "field": "tags"
          },
          "aggs": {
            "average_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}

17.2 bucket和metric

17.2.1 bucket:一个数据分组

cityname
北京张三
北京李四
天津王五
天津赵六
天津王麻子

划分出来两个bucket,一个是北京bucket,一个是天津bucket
北京bucket:包含了2个人,张三,李四
上海bucket:包含了3个人,王五,赵六,王麻子

17.2.2 metric:对一个数据分组执行的统计

metric,就是对一个bucket执行的某种聚合分析的操作,比如说求平均值,求最大值,求最小值

select count(*) from book group by studymodel

bucket:group by studymodel --> 那些studymodel相同的数据,就会被划分到一个bucket中
metric:count(*),对每个user_id bucket中所有的数据,计算一个数量。还有avg(),sum(),max(),min()

17.3 电视案例

创建索引及映射

PUT /tvs
PUT /tvs/_search
{			
			"properties": {
				"price": {
					"type": "long"
				},
				"color": {
					"type": "keyword"
				},
				"brand": {
					"type": "keyword"
				},
				"sold_date": {
					"type": "date"
				}
			}
}

插入数据

POST /tvs/_bulk
{ "index": {}}
{ "price" : 1000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-10-28" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-11-05" }
{ "index": {}}
{ "price" : 3000, "color" : "绿色", "brand" : "小米", "sold_date" : "2019-05-18" }
{ "index": {}}
{ "price" : 1500, "color" : "蓝色", "brand" : "TCL", "sold_date" : "2019-07-02" }
{ "index": {}}
{ "price" : 1200, "color" : "绿色", "brand" : "TCL", "sold_date" : "2019-08-19" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2019-11-05" }
{ "index": {}}
{ "price" : 8000, "color" : "红色", "brand" : "三星", "sold_date" : "2020-01-01" }
{ "index": {}}
{ "price" : 2500, "color" : "蓝色", "brand" : "小米", "sold_date" : "2020-02-12" }

需求1 统计哪种颜色的电视销量最高

GET /tvs/_search
{
    "size" : 0,
    "aggs" : { 
        "popular_colors" : { 
            "terms" : { 
              "field" : "color"
            }
        }
    }
}

查询条件解析:

  • size:只获取聚合结果,而不要执行聚合的原始数据
  • aggs:固定语法,要对一份数据执行分组聚合操作
  • popular_colors:就是对每个aggs,都要起一个名字
  • terms:根据字段的值进行分组
  • field:根据指定的字段的值进行分组

返回

{
  "took" : 18,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 8,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "popular_colors" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "红色",
          "doc_count" : 4
        },
        {
          "key" : "绿色",
          "doc_count" : 2
        },
        {
          "key" : "蓝色",
          "doc_count" : 2
        }
      ]
    }
  }
}

返回结果解析:

  • hits.hits:我们指定了size是0,所以hits.hits就是空的
  • aggregations:聚合结果
  • popular_color:我们指定的某个聚合的名称
  • buckets:根据我们指定的field划分出的buckets
  • key:每个bucket对应的那个值
  • doc_count:这个bucket分组内,有多少个数据,数量就是这种颜色的销量

每种颜色对应的bucket中的数据的默认的排序规则:按照doc_count降序排序

需求2 统计每种颜色电视平均价格

GET /tvs/_search
{
   "size" : 0,
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": { 
            "avg_price": { 
               "avg": {
                  "field": "price" 
               }
            }
         }
      }
   }
}

在一个aggs执行的bucket操作(terms),平级的json结构下,再加一个aggs,这个第二个aggs内部,同样取个名字,执行一个metric操作,avg,对之前的每个bucket中的数据的指定的field,price field,求一个平均值

返回:

{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 8,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "colors" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "红色",
          "doc_count" : 4,
          "avg_price" : {
            "value" : 3250.0
          }
        },
        {
          "key" : "绿色",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 2100.0
          }
        },
        {
          "key" : "蓝色",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 2000.0
          }
        }
      ]
    }
  }
}
  • buckets,除了key和doc_count
  • avg_price:我们自己取的metric aggs的名字
  • value:我们的metric计算的结果,每个bucket中的数据的price字段求平均值后的结果

相当于sql: select avg(price) from tvs group by color

需求3 继续下钻分析

每个颜色下,平均价格及每个颜色下,每个品牌的平均价格

GET /tvs/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "color_avg_price": {
          "avg": {
            "field": "price"
          }
        },
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "brand_avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}

需求4:更多的metric

求出每个颜色的销售数量、平均价格、最大价格、最小价格、价格总和

  • count:bucket,terms,自动就会有一个doc_count,就相当于是count
  • avg:avg aggs,求平均值
  • max:求一个bucket内,指定field值最大的那个数据
  • min:求一个bucket内,指定field值最小的那个数据
  • sum:求一个bucket内,指定field值的总和
GET /tvs/_search
{
   "size" : 0,
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": {
            "avg_price": { "avg": { "field": "price" } },
            "min_price" : { "min": { "field": "price"} }, 
            "max_price" : { "max": { "field": "price"} },
            "sum_price" : { "sum": { "field": "price" } } 
         }
      }
   }
}

需求5:划分范围 histogram

求出价格每2000为一个区间,每个区间的销售总额

GET /tvs/_search
{
   "size" : 0,
   "aggs":{
      "price":{
         "histogram":{ 
            "field": "price",
            "interval": 2000
         },
         "aggs":{
            "income": {
               "sum": { 
                 "field" : "price"
               }
             }
         }
      }
   }
}

histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作

"histogram":{ 
  "field": "price",
  "interval": 2000
}

interval:2000,划分范围,02000,20004000,40006000,60008000,8000~10000,buckets

bucket有了之后,一样的,去对每个bucket执行avg,count,sum,max,min,等各种metric操作,聚合分析

需求6:按照日期分组聚合

求出每个月销售个数

  • date_histogram,按照我们指定的某个date类型的日期field,以及日期interval,按照一定的日期间隔,去划分bucket

  • min_doc_count:即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的

  • extended_bounds,min,max:划分bucket的时候,会限定在这个起始日期,和截止日期内

GET /tvs/_search
{
   "size" : 0,
   "aggs": {
      "sales": {
         "date_histogram": {
            "field": "sold_date",
            "interval": "month", 
            "format": "yyyy-MM-dd",
            "min_doc_count" : 0, 
            "extended_bounds" : { 
                "min" : "2019-01-01",
                "max" : "2020-12-31"
            }
         }
      }
   }
}

需求7 统计每季度每个品牌的销售额以及每个季度销售总额

GET /tvs/_search 
{
  "size": 0,
  "aggs": {
    "group_by_sold_date": {
      "date_histogram": {
        "field": "sold_date",
        "interval": "quarter",
        "format": "yyyy-MM-dd",
        "min_doc_count": 0,
        "extended_bounds": {
          "min": "2019-01-01",
          "max": "2020-12-31"
        }
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        },
        "total_sum_price": {
          "sum": {
            "field": "price"
          }
        }
      }
    }
  }
}

需求8 :搜索与聚合结合,查询某个品牌按颜色销量

搜索与聚合可以结合起来。

sql select count(*) from tvs where brand like “%小米%” group by color

es aggregation,scope,任何的聚合,都必须在搜索出来的结果数据中之行,搜索结果,就是聚合分析操作的scope

GET /tvs/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "小米"
      }
    }
  },
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}

需求9 global bucket:单个品牌与所有品牌销量对比

aggregation,scope,一个聚合操作,必须在query的搜索结果范围内执行

出来两个结果,一个结果,是基于query搜索结果来聚合的;一个结果,是对所有数据执行聚合的

GET /tvs/_search 
{
  "size": 0, 
  "query": {
    "term": {
      "brand": {
        "value": "小米"
      }
    }
  },
  "aggs": {
    "single_brand_avg_price": {
      "avg": {
        "field": "price"
      }
    },
    "all": {
      "global": {},
      "aggs": {
        "all_brand_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

需求10:过滤+聚合:统计价格大于1200的电视平均价格

搜索+聚合

过滤+聚合

GET /tvs/_search 
{
  "size": 0,
  "query": {
    "constant_score": {
      "filter": {
        "range": {
          "price": {
            "gte": 1200
          }
        }
      }
    }
  },
  "aggs": {
    "avg_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}

需求11 bucket filter:统计品牌最近一个月的平均价格

GET /tvs/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "小米"
      }
    }
  },
  "aggs": {
    "recent_150d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-150d"
          }
        }
      },
      "aggs": {
        "recent_150d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_140d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-140d"
          }
        }
      },
      "aggs": {
        "recent_140d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_130d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-130d"
          }
        }
      },
      "aggs": {
        "recent_130d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

aggs.filter,针对的是聚合去做的

如果放query里面的filter,是全局的,会对所有的数据都有影响

比如说,要统计长虹电视,最近1个月的平均值;最近3个月的平均值;最近6个月的平均值

bucket filter:对不同的bucket下的aggs,进行filter

需求12 排序:按每种颜色的平均销售额降序排序

GET /tvs/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color",
        "order": {
          "avg_price": "asc"
        }
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

相当于sql子表数据字段可以立刻使用。

需求13 排序:按每种颜色的每种品牌平均销售额降序排序

GET /tvs/_search  
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand",
            "order": {
              "avg_price": "desc"
            }
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}

18.java api实现聚合

package com.itheima.es;

import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;
import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.search.aggregations.Aggregation;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.histogram.*;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.*;
import org.elasticsearch.search.builder.SearchSourceBuilder;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

import java.io.IOException;
import java.util.List;

/**
 * creste by itheima.itcast
 */
@SpringBootTest
@RunWith(SpringRunner.class)
public class TestAggs {
    
    @Autowired
    RestHighLevelClient client;

    //需求一:按照颜色分组,计算每个颜色卖出的个数
    @Test
    public void testAggs() throws IOException {
        // GET /tvs/_search
        // {
        //     "size": 0,
        //     "query": {"match_all": {}},
        //     "aggs": {
        //       "group_by_color": {
        //         "terms": {
        //             "field": "color"
        //         }
        //     }
        // }
        // }

        //1 构建请求
        SearchRequest searchRequest=new SearchRequest("tvs");

        //请求体
        SearchSourceBuilder searchSourceBuilder=new SearchSourceBuilder();
        searchSourceBuilder.size(0);
        searchSourceBuilder.query(QueryBuilders.matchAllQuery());

        TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms("group_by_color").field("color");
        searchSourceBuilder.aggregation(termsAggregationBuilder);

        //请求体放入请求头
        searchRequest.source(searchSourceBuilder);

        //2 执行
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        //3 获取结果
      //   "aggregations" : {
      //       "group_by_color" : {
      //           "doc_count_error_upper_bound" : 0,
      //           "sum_other_doc_count" : 0,
      //            "buckets" : [
      //           {
      //               "key" : "红色",
      //               "doc_count" : 4
      //           },
      //           {
      //               "key" : "绿色",
      //                   "doc_count" : 2
      //           },
      //           {
      //               "key" : "蓝色",
      //                   "doc_count" : 2
      //           }
      // ]
      //       }
        Aggregations aggregations = searchResponse.getAggregations();
        Terms group_by_color = aggregations.get("group_by_color");
        List<? extends Terms.Bucket> buckets = group_by_color.getBuckets();
        for (Terms.Bucket bucket : buckets) {
            String key = bucket.getKeyAsString();
            System.out.println("key:"+key);

            long docCount = bucket.getDocCount();
            System.out.println("docCount:"+docCount);

            System.out.println("=================================");
        }
    }

    // #需求二:按照颜色分组,计算每个颜色卖出的个数,每个颜色卖出的平均价格
    @Test
    public void testAggsAndAvg() throws IOException {
        // GET /tvs/_search
        // {
        //     "size": 0,
        //      "query": {"match_all": {}},
        //     "aggs": {
        //     "group_by_color": {
        //         "terms": {
        //             "field": "color"
        //         },
        //         "aggs": {
        //             "avg_price": {
        //                 "avg": {
        //                     "field": "price"
        //                 }
        //             }
        //         }
        //     }
        // }
        // }

        //1 构建请求
        SearchRequest searchRequest=new SearchRequest("tvs");

        //请求体
        SearchSourceBuilder searchSourceBuilder=new SearchSourceBuilder();
        searchSourceBuilder.size(0);
        searchSourceBuilder.query(QueryBuilders.matchAllQuery());

        TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms("group_by_color").field("color");

        //terms聚合下填充一个子聚合
        AvgAggregationBuilder avgAggregationBuilder = AggregationBuilders.avg("avg_price").field("price");
        termsAggregationBuilder.subAggregation(avgAggregationBuilder);

        searchSourceBuilder.aggregation(termsAggregationBuilder);

        //请求体放入请求头
        searchRequest.source(searchSourceBuilder);

        //2 执行
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        //3 获取结果
        // {
        //     "key" : "红色",
        //      "doc_count" : 4,
        //      "avg_price" : {
        //        "value" : 3250.0
        //       }
        // }
        Aggregations aggregations = searchResponse.getAggregations();
        Terms group_by_color = aggregations.get("group_by_color");
        List<? extends Terms.Bucket> buckets = group_by_color.getBuckets();
        for (Terms.Bucket bucket : buckets) {
            String key = bucket.getKeyAsString();
            System.out.println("key:"+key);

            long docCount = bucket.getDocCount();
            System.out.println("docCount:"+docCount);

            Aggregations aggregations1 = bucket.getAggregations();
            Avg avg_price = aggregations1.get("avg_price");
            double value = avg_price.getValue();
            System.out.println("value:"+value);

            System.out.println("=================================");
        }
    }

    // #需求三:按照颜色分组,计算每个颜色卖出的个数,以及每个颜色卖出的平均值、最大值、最小值、总和。
    @Test
    public void testAggsAndMore() throws IOException {
        // GET /tvs/_search
        // {
        //     "size" : 0,
        //     "aggs": {
        //      "group_by_color": {
        //         "terms": {
        //             "field": "color"
        //         },
        //         "aggs": {
        //             "avg_price": { "avg": { "field": "price" } },
        //             "min_price" : { "min": { "field": "price"} },
        //             "max_price" : { "max": { "field": "price"} },
        //             "sum_price" : { "sum": { "field": "price" } }
        //         }
        //     }
        // }
        // }

        //1 构建请求
        SearchRequest searchRequest=new SearchRequest("tvs");

        //请求体
        SearchSourceBuilder searchSourceBuilder=new SearchSourceBuilder();
        searchSourceBuilder.size(0);
        searchSourceBuilder.query(QueryBuilders.matchAllQuery());

        TermsAggregationBuilder termsAggregationBuilder = AggregationBuilders.terms("group_by_color").field("color");


        //termsAggregationBuilder里放入多个子聚合
        AvgAggregationBuilder avgAggregationBuilder = AggregationBuilders.avg("avg_price").field("price");
        MinAggregationBuilder minAggregationBuilder = AggregationBuilders.min("min_price").field("price");
        MaxAggregationBuilder maxAggregationBuilder = AggregationBuilders.max("max_price").field("price");
        SumAggregationBuilder sumAggregationBuilder = AggregationBuilders.sum("sum_price").field("price");

        termsAggregationBuilder.subAggregation(avgAggregationBuilder);
        termsAggregationBuilder.subAggregation(minAggregationBuilder);
        termsAggregationBuilder.subAggregation(maxAggregationBuilder);
        termsAggregationBuilder.subAggregation(sumAggregationBuilder);


        searchSourceBuilder.aggregation(termsAggregationBuilder);

        //请求体放入请求头
        searchRequest.source(searchSourceBuilder);

        //2 执行
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        //3 获取结果
        // {
        //     "key" : "红色",
        //     "doc_count" : 4,
        //     "max_price" : {
        //          "value" : 8000.0
        //     },
        //     "min_price" : {
        //          "value" : 1000.0
        // },
        //     "avg_price" : {
        //         "value" : 3250.0
        // },
        //     "sum_price" : {
        //         "value" : 13000.0
        // }
        // }
        Aggregations aggregations = searchResponse.getAggregations();
        Terms group_by_color = aggregations.get("group_by_color");
        List<? extends Terms.Bucket> buckets = group_by_color.getBuckets();
        for (Terms.Bucket bucket : buckets) {
            String key = bucket.getKeyAsString();
            System.out.println("key:"+key);

            long docCount = bucket.getDocCount();
            System.out.println("docCount:"+docCount);

            Aggregations aggregations1 = bucket.getAggregations();

            Max max_price = aggregations1.get("max_price");
            double maxPriceValue = max_price.getValue();
            System.out.println("maxPriceValue:"+maxPriceValue);

            Min min_price = aggregations1.get("min_price");
            double minPriceValue = min_price.getValue();
            System.out.println("minPriceValue:"+minPriceValue);

            Avg avg_price = aggregations1.get("avg_price");
            double avgPriceValue = avg_price.getValue();
            System.out.println("avgPriceValue:"+avgPriceValue);

            Sum sum_price = aggregations1.get("sum_price");
            double sumPriceValue = sum_price.getValue();
            System.out.println("sumPriceValue:"+sumPriceValue);

            System.out.println("=================================");
        }
    }

    // #需求四:按照售价每2000价格划分范围,算出每个区间的销售总额 histogram
    @Test
    public void testAggsAndHistogram() throws IOException {
        // GET /tvs/_search
        // {
        //     "size" : 0,
        //     "aggs":{
        //      "by_histogram":{
        //         "histogram":{
        //             "field": "price",
        //             "interval": 2000
        //         },
        //         "aggs":{
        //             "income": {
        //                 "sum": {
        //                     "field" : "price"
        //                 }
        //             }
        //         }
        //     }
        // }
        // }

        //1 构建请求
        SearchRequest searchRequest=new SearchRequest("tvs");

        //请求体
        SearchSourceBuilder searchSourceBuilder=new SearchSourceBuilder();
        searchSourceBuilder.size(0);
        searchSourceBuilder.query(QueryBuilders.matchAllQuery());

        HistogramAggregationBuilder histogramAggregationBuilder = AggregationBuilders.histogram("by_histogram").field("price").interval(2000);

        SumAggregationBuilder sumAggregationBuilder = AggregationBuilders.sum("income").field("price");
        histogramAggregationBuilder.subAggregation(sumAggregationBuilder);
        searchSourceBuilder.aggregation(histogramAggregationBuilder);

        //请求体放入请求头
        searchRequest.source(searchSourceBuilder);

        //2 执行
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        //3 获取结果
        // {
        //     "key" : 0.0,
        //     "doc_count" : 3,
        //      income" : {
        //          "value" : 3700.0
        //       }
        // }
        Aggregations aggregations = searchResponse.getAggregations();
        Histogram group_by_color = aggregations.get("by_histogram");
        List<? extends Histogram.Bucket> buckets = group_by_color.getBuckets();
        for (Histogram.Bucket bucket : buckets) {
            String keyAsString = bucket.getKeyAsString();
            System.out.println("keyAsString:"+keyAsString);
            long docCount = bucket.getDocCount();
            System.out.println("docCount:"+docCount);

            Aggregations aggregations1 = bucket.getAggregations();
            Sum income = aggregations1.get("income");
            double value = income.getValue();
            System.out.println("value:"+value);

            System.out.println("=================================");

        }
    }

    // #需求五:计算每个季度的销售总额
    @Test
    public void testAggsAndDateHistogram() throws IOException {
        // GET /tvs/_search
        // {
        //     "size" : 0,
        //     "aggs": {
        //     "sales": {
        //         "date_histogram": {
        //                      "field": "sold_date",
        //                     "interval": "quarter",
        //                     "format": "yyyy-MM-dd",
        //                     "min_doc_count" : 0,
        //                     "extended_bounds" : {
        //                         "min" : "2019-01-01",
        //                         "max" : "2020-12-31"
        //             }
        //         },
        //         "aggs": {
        //             "income": {
        //                 "sum": {
        //                     "field": "price"
        //                 }
        //             }
        //         }
        //     }
        // }
        // }

        //1 构建请求
        SearchRequest searchRequest=new SearchRequest("tvs");

        //请求体
        SearchSourceBuilder searchSourceBuilder=new SearchSourceBuilder();
        searchSourceBuilder.size(0);
        searchSourceBuilder.query(QueryBuilders.matchAllQuery());

        DateHistogramAggregationBuilder dateHistogramAggregationBuilder = AggregationBuilders.dateHistogram("date_histogram").field("sold_date").calendarInterval(DateHistogramInterval.QUARTER)
                .format("yyyy-MM-dd").minDocCount(0).extendedBounds(new ExtendedBounds("2019-01-01", "2020-12-31"));
        SumAggregationBuilder sumAggregationBuilder = AggregationBuilders.sum("income").field("price");
        dateHistogramAggregationBuilder.subAggregation(sumAggregationBuilder);

        searchSourceBuilder.aggregation(dateHistogramAggregationBuilder);
        //请求体放入请求头
        searchRequest.source(searchSourceBuilder);

        //2 执行
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        //3 获取结果
        // {
        //     "key_as_string" : "2019-01-01",
        //      "key" : 1546300800000,
        //      "doc_count" : 0,
        //      "income" : {
        //         "value" : 0.0
        //      }
        // }
        Aggregations aggregations = searchResponse.getAggregations();
        ParsedDateHistogram date_histogram = aggregations.get("date_histogram");
        List<? extends Histogram.Bucket> buckets = date_histogram.getBuckets();
        for (Histogram.Bucket bucket : buckets) {
            String keyAsString = bucket.getKeyAsString();
            System.out.println("keyAsString:"+keyAsString);
            long docCount = bucket.getDocCount();
            System.out.println("docCount:"+docCount);

            Aggregations aggregations1 = bucket.getAggregations();
            Sum income = aggregations1.get("income");
            double value = income.getValue();
            System.out.println("value:"+value);

            System.out.println("====================");
        }

    }

}

19.es7 sql新特性

19.1 快速入门

POST /_sql?format=txt
{
    "query": "SELECT * FROM tvs "
}

19.2 启动方式

  1. http 请求

  2. 客户端:elasticsearch-sql-cli.bat

  3. 代码

19.3 显示方式

在这里插入图片描述

19.4 sql 翻译

POST /_sql/translate
{
    "query": "SELECT * FROM tvs "
}

返回:

{
  "size" : 1000,
  "_source" : false,
  "stored_fields" : "_none_",
  "docvalue_fields" : [
    {
      "field" : "brand"
    },
    {
      "field" : "color"
    },
    {
      "field" : "price"
    },
    {
      "field" : "sold_date",
      "format" : "epoch_millis"
    }
  ],
  "sort" : [
    {
      "_doc" : {
        "order" : "asc"
      }
    }
  ]
}

19.5 与其他DSL结合

POST /_sql?format=txt
{
    "query": "SELECT * FROM tvs",
    "filter": {
        "range": {
            "price": {
                "gte" : 1200,
                "lte" : 2000
            }
        }
    }
}

19.6 java代码实现sql功能

1 前提 es拥有白金版功能

kibana中管理 -> 许可管理 开启白金版试用

2 导入依赖

    <dependency>
        <groupId>org.elasticsearch.plugin</groupId>
        <artifactId>x-pack-sql-jdbc</artifactId>
        <version>7.3.0</version>
    </dependency>
    
    <repositories>
        <repository>
            <id>elastic.co</id>
            <url>https://artifacts.elastic.co/maven</url>
        </repository>
    </repositories>

3 代码

public static void main(String[] args) {
        try  {
            // 1创建连接
            Connection connection = DriverManager.getConnection("jdbc:es://http://localhost:9200");
            // 2创建statement
            Statement statement = connection.createStatement();
            // 3执行sql
            ResultSet results = statement.executeQuery("select * from tvs");
            // 4获取结果
            while(results.next()){
                System.out.println(results.getString(1));
                System.out.println(results.getString(2));
                System.out.println(results.getString(3));
                System.out.println(results.getString(4));
                System.out.println("============================");
            }
        }catch (Exception e){
            e.printStackTrace();
        }
}

大型企业可以购买白金版,增加Machine Learning、高级安全性x-pack。

20.Logstash学习

20.1 基本语法组成

在这里插入图片描述

1 Logstash介绍

logstash是一个数据抽取工具,将数据从一个地方转移到另一个地方。如hadoop生态圈的sqoop等。下载地址:https://www.elastic.co/cn/downloads/logstash

logstash之所以功能强大和流行,还与其丰富的过滤器插件是分不开的,过滤器提供的并不单单是过滤的功能,还可以对进入过滤器的原始数据进行复杂的逻辑处理,甚至添加独特的事件到后续流程中。
Logstash配置文件有如下三部分组成,其中input、output部分是必须配置,filter部分是可选配置,而filter就是过滤器插件,在这部分实现各种日志过滤功能。

2 配置文件

input {
    #输入插件
}
filter {
    #过滤匹配插件
}
output {
    #输出插件
}

3 启动操作

logstash.bat -e 'input{stdin{}} output{stdout{}}'

为了好维护,将配置写入文件,启动

logstash.bat -f ../config/test1.conf

20.2 输入插件(input)

https://www.elastic.co/guide/en/logstash/current/input-plugins.html

1、标准输入(Stdin)

input{
    stdin{
       
    }
}
output {
    stdout{
        codec=>rubydebug    
    }
}

2、读取文件(File)

logstash使用一个名为filewatch的ruby gem库来监听文件变化,并通过一个叫.sincedb的数据库文件来记录被监听的日志文件的读取进度(时间戳),这个sincedb数据文件的默认路径在 <path.data>/plugins/inputs/file下面,文件名类似于.sincedb_123456,而<path.data>表示logstash插件存储目录,默认是LOGSTASH_HOME/data。

input {
    file {
        path => ["/var/*/*"]
        start_position => "beginning"
    }
}
output {
    stdout{
        codec=>rubydebug
    }
}

默认情况下,logstash会从文件的结束位置开始读取数据,也就是说logstash进程会以类似tail -f命令的形式逐行获取数据。

3、读取TCP网络数据

input {
  tcp {
    port => "1234"
  }
}

filter {
  grok {
    match => { "message" => "%{SYSLOGLINE}" }
  }
}

output {
    stdout{
        codec=>rubydebug
    }
}

20.3 过滤器插件(Filter)

https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

20.3.1 Grok 正则捕获

grok是一个十分强大的logstash filter插件,他可以通过正则解析任意文本,将非结构化日志数据弄成结构化和方便查询的结构。他是目前logstash中解析非结构化日志数据最好的方式。

Grok 的语法规则是:

%{语法: 语义}

例如输入的内容为:

172.16.213.132 [07/Feb/2019:16:24:19 +0800] "GET / HTTP/1.1" 403 5039

%{IP:clientip}匹配模式将获得的结果为:clientip: 172.16.213.132
%{HTTPDATE:timestamp}匹配模式将获得的结果为:timestamp: 07/Feb/2018:16:24:19 +0800
而%{QS:referrer}匹配模式将获得的结果为:referrer: “GET / HTTP/1.1”

下面是一个组合匹配模式,它可以获取上面输入的所有内容:

%{IP:clientip}\ \[%{HTTPDATE:timestamp}\]\ %{QS:referrer}\ %{NUMBER:response}\ %{NUMBER:bytes}

通过上面这个组合匹配模式,我们将输入的内容分成了五个部分,即五个字段,将输入内容分割为不同的数据字段,这对于日后解析和查询日志数据非常有用,这正是使用grok的目的。

例子:

input{
    stdin{}
}
filter{
    grok{
        match => ["message","%{IP:clientip}\ \[%{HTTPDATE:timestamp}\]\ %{QS:referrer}\ %{NUMBER:response}\ %{NUMBER:bytes}"]
    }
}
output{
    stdout{
        codec => "rubydebug"
    }
}

输入内容:

172.16.213.132 [07/Feb/2019:16:24:19 +0800] "GET / HTTP/1.1" 403 5039

20.3.2 时间处理(Date)

date插件是对于排序事件和回填旧数据尤其重要,它可以用来转换日志记录中的时间字段,变成LogStash::Timestamp对象,然后转存到@timestamp字段里,这在之前已经做过简单的介绍。
下面是date插件的一个配置示例(这里仅仅列出filter部分):

filter {
    grok {
        match => ["message", "%{HTTPDATE:timestamp}"]
    }
    date {
        match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]
    }
}

20.3.3 数据修改(Mutate)

(1)正则表达式替换匹配字段

gsub可以通过正则表达式替换字段中匹配到的值,只对字符串字段有效,下面是一个关于mutate插件中gsub的示例(仅列出filter部分):

filter {
    mutate {
        gsub => ["filed_name_1", "/" , "_"]
    }
}

这个示例表示将filed_name_1字段中所有"/“字符替换为”_"。

(2)分隔符分割字符串为数组

split可以通过指定的分隔符分割字段中的字符串为数组,下面是一个关于mutate插件中split的示例(仅列出filter部分):

filter {
    mutate {
        split => ["filed_name_2", "|"]
    }
}

这个示例表示将filed_name_2字段以"|"为区间分隔为数组。

(3)重命名字段

rename可以实现重命名某个字段的功能,下面是一个关于mutate插件中rename的示例(仅列出filter部分):

filter {
    mutate {
        rename => { "old_field" => "new_field" }
    }
}

这个示例表示将字段old_field重命名为new_field。

(4)删除字段

remove_field可以实现删除某个字段的功能,下面是一个关于mutate插件中remove_field的示例(仅列出filter部分):

filter {
    mutate {
        remove_field  =>  ["timestamp"]
    }
}

这个示例表示将字段timestamp删除。

(5)GeoIP地址查询归类

filter {
    geoip {
        source => "ip_field"
    }
}

综合例子:

input {
    stdin {}
}
filter {
    grok {
        match => { "message" => "%{IP:clientip}\ \[%{HTTPDATE:timestamp}\]\ %{QS:referrer}\ %{NUMBER:response}\ %{NUMBER:bytes}" }
        remove_field => [ "message" ]
   }
date {
        match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]
    }
mutate {
          convert => [ "response","float" ]
           rename => { "response" => "response_new" }   
           gsub => ["referrer","\"",""]          
           split => ["clientip", "."]
        }
}
output {
    stdout {
        codec => "rubydebug"
    }
}

20.4 输出插件(output)

https://www.elastic.co/guide/en/logstash/current/output-plugins.html

output是Logstash的最后阶段,一个事件可以经过多个输出,而一旦所有输出处理完成,整个事件就执行完成。 一些常用的输出包括:

  • file: 表示将日志数据写入磁盘上的文件。
  • elasticsearch:表示将日志数据发送给Elasticsearch。Elasticsearch可以高效方便和易于查询的保存数据。

1、输出到标准输出(stdout)

output {
    stdout {
        codec => rubydebug
    }
}

2、保存为文件(file)

output {
    file {
        path => "/data/log/%{+yyyy-MM-dd}/%{host}_%{+HH}.log"
    }
}

3、输出到elasticsearch

output {
    elasticsearch {
        host => ["192.168.1.1:9200","172.16.213.77:9200"]
        index => "logstash-%{+YYYY.MM.dd}"       
    }
}
  • host:是一个数组类型的值,后面跟的值是elasticsearch节点的地址与端口,默认端口是9200。可添加多个地址。
  • index:写入elasticsearch的索引的名称,这里可以使用变量。Logstash提供了%{+YYYY.MM.dd}这种写法。在语法解析的时候,看到以+ 号开头的,就会自动认为后面是时间格式,尝试用时间格式来解析后续字符串。这种以天为单位分割的写法,可以很容易的删除老的数据或者搜索指定时间范围内的数据。此外,注意索引名中不能有大写字母。
  • manage_template:用来设置是否开启logstash自动管理模板功能,如果设置为false将关闭自动管理模板功能。如果我们自定义了模板,那么应该设置为false。
  • template_name:这个配置项用来设置在Elasticsearch中模板的名称。

20.5 综合案例

input {
    file {
        path => ["D:/ES/logstash-7.3.0/nginx.log"]        
        start_position => "beginning"
    }
}

filter {
    grok {
        match => { "message" => "%{IP:clientip}\ \[%{HTTPDATE:timestamp}\]\ %{QS:referrer}\ %{NUMBER:response}\ %{NUMBER:bytes}" }
        remove_field => [ "message" ]
   }
	date {
        match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]
    }
	mutate {
           rename => { "response" => "response_new" }
           convert => [ "response","float" ]
           gsub => ["referrer","\"",""]
           remove_field => ["timestamp"]
           split => ["clientip", "."]
        }
}

output {
    stdout {
        codec => "rubydebug"
    }

    elasticsearch {
        host => ["localhost:9200"]
        index => "logstash-%{+YYYY.MM.dd}"       
    }

}

21.kibana学习

21.1 基本查询

  1. 是什么:elk中数据展现工具

  2. 下载:https://www.elastic.co/cn/downloads/kibana

  3. 使用:建立索引模式,index partten

discover 中使用DSL搜索。

21.2 可视化

绘制图形。

21.3 仪表盘

将各种可视化图形放入,形成大屏幕。

21.4 使用模板数据指导绘图

点击主页的添加模板数据,可以看到很多模板数据以及绘图。

21.5 其他功能

监控,日志,APM等功能非常丰富。

22.集群部署

在这里插入图片描述

结点的三个角色

主结点:master节点主要用于集群的管理及索引 比如新增结点、分片分配、索引的新增和删除等。

数据结点:data 节点上保存了数据分片,它负责索引和搜索操作。

客户端结点:client 节点仅作为请求客户端存在,client的作用也作为负载均衡器,client 节点不存数据,只是将请求均衡转发到其它结点。

通过下边两项参数来配置结点的功能:

node.master: #是否允许为主结点
node.data: #允许存储数据作为数据结点
node.ingest: #是否允许成为协调节点

四种组合方式:

master=true,data=true:即是主结点又是数据结点
master=false,data=true:仅是数据结点
master=true,data=false:仅是主结点,不存储数据
master=false,data=false:即不是主结点也不是数据结点,此时可设置ingest为true表示它是一个客户端

23.项目实战

23.1 项目一:ELK用于日志分析

需求:集中收集分布式服务的日志

  1. 逻辑模块程序随时输出日志
package com.itheima.es;

import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

import java.util.Random;

/**
 * creste by itheima.itcast
 */
@SpringBootTest
@RunWith(SpringRunner.class)
public class TestLog {
    private static final Logger LOGGER = LoggerFactory.getLogger(TestLog.class);

    @Test
    public void testLog(){
        Random random = new Random();

        while (true){
            int userid = random.nextInt(10);
            LOGGER.info("userId:{},send:{}",userid,"hello world.I am "+userid);
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
    
}
  1. logstash收集日志到es
input {
    file {
        path => ["D:/logs/log-*.log"]
        start_position => "beginning"
    }
}

filter {
    grok {
        match => { "message" => "%{DATA:datetime}\ \[%DATA:thread)\]\ %{DATA:level}\ \ %{DATA:class} - %{GREEDYDATA:logger}" }
        remove_field => [ "message" ]
    }
	date {
        match => ["datetime", "yyyy-MM-dd HH:mm:ss.SSS"]
    }
	if "_grokparsefailure" in [tags] {
		drop { }
	}
}

output {
    elasticsearch {
        hosts => ["127.0.0.1:9200"]
        index => "logger-%{+YYYY.MM.dd}"
    }
}

grok 内置类型

USERNAME [a-zA-Z0-9._-]+
USER %{USERNAME}
INT (?:[+-]?(?:[0-9]+))
BASE10NUM (?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))
NUMBER (?:%{BASE10NUM})
BASE16NUM (?<![0-9A-Fa-f])(?:[+-]?(?:0x)?(?:[0-9A-Fa-f]+))
BASE16FLOAT \b(?<![0-9A-Fa-f.])(?:[+-]?(?:0x)?(?:(?:[0-9A-Fa-f]+(?:\.[0-9A-Fa-f]*)?)|(?:\.[0-9A-Fa-f]+)))\b

POSINT \b(?:[1-9][0-9]*)\b
NONNEGINT \b(?:[0-9]+)\b
WORD \b\w+\b
NOTSPACE \S+
SPACE \s*
DATA .*?
GREEDYDATA .*
QUOTEDSTRING (?>(?<!\\)(?>"(?>\\.|[^\\"]+)+"|""|(?>'(?>\\.|[^\\']+)+')|''|(?>`(?>\\.|[^\\`]+)+`)|``))
UUID [A-Fa-f0-9]{8}-(?:[A-Fa-f0-9]{4}-){3}[A-Fa-f0-9]{12}

# Networking
MAC (?:%{CISCOMAC}|%{WINDOWSMAC}|%{COMMONMAC})
CISCOMAC (?:(?:[A-Fa-f0-9]{4}\.){2}[A-Fa-f0-9]{4})
WINDOWSMAC (?:(?:[A-Fa-f0-9]{2}-){5}[A-Fa-f0-9]{2})
COMMONMAC (?:(?:[A-Fa-f0-9]{2}:){5}[A-Fa-f0-9]{2})
IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,5}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:)))(%.+)?
IPV4 (?<![0-9])(?:(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2}))(?![0-9])
IP (?:%{IPV6}|%{IPV4})
HOSTNAME \b(?:[0-9A-Za-z][0-9A-Za-z-]{0,62})(?:\.(?:[0-9A-Za-z][0-9A-Za-z-]{0,62}))*(\.?|\b)
HOST %{HOSTNAME}
IPORHOST (?:%{HOSTNAME}|%{IP})
HOSTPORT %{IPORHOST}:%{POSINT}

# paths
PATH (?:%{UNIXPATH}|%{WINPATH})
UNIXPATH (?>/(?>[\w_%!$@:.,-]+|\\.)*)+
TTY (?:/dev/(pts|tty([pq])?)(\w+)?/?(?:[0-9]+))
WINPATH (?>[A-Za-z]+:|\\)(?:\\[^\\?*]*)+
URIPROTO [A-Za-z]+(\+[A-Za-z+]+)?
URIHOST %{IPORHOST}(?::%{POSINT:port})?
# uripath comes loosely from RFC1738, but mostly from what Firefox
# doesn't turn into %XX
URIPATH (?:/[A-Za-z0-9$.+!*'(){},~:;=@#%_\-]*)+
#URIPARAM \?(?:[A-Za-z0-9]+(?:=(?:[^&]*))?(?:&(?:[A-Za-z0-9]+(?:=(?:[^&]*))?)?)*)?
URIPARAM \?[A-Za-z0-9$.+!*'|(){},~@#%&/=:;_?\-\[\]]*
URIPATHPARAM %{URIPATH}(?:%{URIPARAM})?
URI %{URIPROTO}://(?:%{USER}(?::[^@]*)?@)?(?:%{URIHOST})?(?:%{URIPATHPARAM})?

# Months: January, Feb, 3, 03, 12, December
MONTH \b(?:Jan(?:uary)?|Feb(?:ruary)?|Mar(?:ch)?|Apr(?:il)?|May|Jun(?:e)?|Jul(?:y)?|Aug(?:ust)?|Sep(?:tember)?|Oct(?:ober)?|Nov(?:ember)?|Dec(?:ember)?)\b
MONTHNUM (?:0?[1-9]|1[0-2])
MONTHNUM2 (?:0[1-9]|1[0-2])
MONTHDAY (?:(?:0[1-9])|(?:[12][0-9])|(?:3[01])|[1-9])

# Days: Monday, Tue, Thu, etc...
DAY (?:Mon(?:day)?|Tue(?:sday)?|Wed(?:nesday)?|Thu(?:rsday)?|Fri(?:day)?|Sat(?:urday)?|Sun(?:day)?)

# Years?
YEAR (?>\d\d){1,2}
HOUR (?:2[0123]|[01]?[0-9])
MINUTE (?:[0-5][0-9])
# '60' is a leap second in most time standards and thus is valid.
SECOND (?:(?:[0-5]?[0-9]|60)(?:[:.,][0-9]+)?)
TIME (?!<[0-9])%{HOUR}:%{MINUTE}(?::%{SECOND})(?![0-9])
# datestamp is YYYY/MM/DD-HH:MM:SS.UUUU (or something like it)
DATE_US %{MONTHNUM}[/-]%{MONTHDAY}[/-]%{YEAR}
DATE_EU %{MONTHDAY}[./-]%{MONTHNUM}[./-]%{YEAR}
ISO8601_TIMEZONE (?:Z|[+-]%{HOUR}(?::?%{MINUTE}))
ISO8601_SECOND (?:%{SECOND}|60)
TIMESTAMP_ISO8601 %{YEAR}-%{MONTHNUM}-%{MONTHDAY}[T ]%{HOUR}:?%{MINUTE}(?::?%{SECOND})?%{ISO8601_TIMEZONE}?
DATE %{DATE_US}|%{DATE_EU}
DATESTAMP %{DATE}[- ]%{TIME}
TZ (?:[PMCE][SD]T|UTC)
DATESTAMP_RFC822 %{DAY} %{MONTH} %{MONTHDAY} %{YEAR} %{TIME} %{TZ}
DATESTAMP_RFC2822 %{DAY}, %{MONTHDAY} %{MONTH} %{YEAR} %{TIME} %{ISO8601_TIMEZONE}
DATESTAMP_OTHER %{DAY} %{MONTH} %{MONTHDAY} %{TIME} %{TZ} %{YEAR}
DATESTAMP_EVENTLOG %{YEAR}%{MONTHNUM2}%{MONTHDAY}%{HOUR}%{MINUTE}%{SECOND}

# Syslog Dates: Month Day HH:MM:SS
SYSLOGTIMESTAMP %{MONTH} +%{MONTHDAY} %{TIME}
PROG (?:[\w._/%-]+)
SYSLOGPROG %{PROG:program}(?:\[%{POSINT:pid}\])?
SYSLOGHOST %{IPORHOST}
SYSLOGFACILITY <%{NONNEGINT:facility}.%{NONNEGINT:priority}>
HTTPDATE %{MONTHDAY}/%{MONTH}/%{YEAR}:%{TIME} %{INT}

# Shortcuts
QS %{QUOTEDSTRING}

# Log formats
SYSLOGBASE %{SYSLOGTIMESTAMP:timestamp} (?:%{SYSLOGFACILITY} )?%{SYSLOGHOST:logsource} %{SYSLOGPROG}:
COMMONAPACHELOG %{IPORHOST:clientip} %{USER:ident} %{USER:auth} \[%{HTTPDATE:timestamp}\] "(?:%{WORD:verb} %{NOTSPACE:request}(?: HTTP/%{NUMBER:httpversion})?|%{DATA:rawrequest})" %{NUMBER:response} (?:%{NUMBER:bytes}|-)
COMBINEDAPACHELOG %{COMMONAPACHELOG} %{QS:referrer} %{QS:agent}

# Log Levels
LOGLEVEL ([Aa]lert|ALERT|[Tt]race|TRACE|[Dd]ebug|DEBUG|[Nn]otice|NOTICE|[Ii]nfo|INFO|[Ww]arn?(?:ing)?|WARN?(?:ING)?|[Ee]rr?(?:or)?|ERR?(?:OR)?|[Cc]rit?(?:ical)?|CRIT?(?:ICAL)?|[Ff]atal|FATAL|[Ss]evere|SEVERE|EMERG(?:ENCY)?|[Ee]merg(?:ency)?)

写logstash配置文件。

  1. kibana展现数据

23.2 项目二:学成在线站内搜索

  1. mysql导入course_pub表
  2. 创建索引xc_course
  3. 创建映射
PUT /xc_course
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
    "properties": {
      "description" : {
                "analyzer" : "ik_max_word",
                "search_analyzer": "ik_smart",
               "type" : "text"
            },
            "grade" : {
               "type" : "keyword"
            },
            "id" : {
               "type" : "keyword"
            },
            "mt" : {
               "type" : "keyword"
            },
            "name" : {
                "analyzer" : "ik_max_word",
           "search_analyzer": "ik_smart",
               "type" : "text"
            },
            "users" : {
               "index" : false,
               "type" : "text"
            },
            "charge" : {
               "type" : "keyword"
            },
            "valid" : {
               "type" : "keyword"
            },
            "pic" : {
               "index" : false,
               "type" : "keyword"
            },
            "qq" : {
               "index" : false,
               "type" : "keyword"
            },
            "price" : {
               "type" : "float"
            },
            "price_old" : {
               "type" : "float"
            },
            "st" : {
               "type" : "keyword"
            },
            "status" : {
               "type" : "keyword"
            },
            "studymodel" : {
               "type" : "keyword"
            },
            "teachmode" : {
               "type" : "keyword"
            },
            "teachplan" : {
                "analyzer" : "ik_max_word",
           "search_analyzer": "ik_smart",
               "type" : "text"
            },
           "expires" : {
               "type" : "date",
            "format": "yyyy-MM-dd HH:mm:ss"
            },
            "pub_time" : {
               "type" : "date",
             "format": "yyyy-MM-dd HH:mm:ss"
            },
            "start_time" : {
               "type" : "date",
           "format": "yyyy-MM-dd HH:mm:ss"
            },
          "end_time" : {
                 "type" : "date",
           "format": "yyyy-MM-dd HH:mm:ss"
            }
    }
  } 
}
  1. logstash创建模板文件

Logstash的工作是从MySQL中读取数据,向ES中创建索引,这里需要提前创建mapping的模板文件以便logstash使用。

在logstach的config目录创建xc_course_template.json,内容如下:

{
   "mappings" : {
      "doc" : {
         "properties" : {
            "charge" : {
               "type" : "keyword"
            },
            "description" : {
               "analyzer" : "ik_max_word",
               "search_analyzer" : "ik_smart",
               "type" : "text"
            },
            "end_time" : {
               "format" : "yyyy-MM-dd HH:mm:ss",
               "type" : "date"
            },
            "expires" : {
               "format" : "yyyy-MM-dd HH:mm:ss",
               "type" : "date"
            },
            "grade" : {
               "type" : "keyword"
            },
            "id" : {
               "type" : "keyword"
            },
            "mt" : {
               "type" : "keyword"
            },
            "name" : {
               "analyzer" : "ik_max_word",
               "search_analyzer" : "ik_smart",
               "type" : "text"
            },
            "pic" : {
               "index" : false,
               "type" : "keyword"
            },
            "price" : {
               "type" : "float"
            },
            "price_old" : {
               "type" : "float"
            },
            "pub_time" : {
               "format" : "yyyy-MM-dd HH:mm:ss",
               "type" : "date"
            },
            "qq" : {
               "index" : false,
               "type" : "keyword"
            },
            "st" : {
               "type" : "keyword"
            },
            "start_time" : {
               "format" : "yyyy-MM-dd HH:mm:ss",
               "type" : "date"
            },
            "status" : {
               "type" : "keyword"
            },
            "studymodel" : {
               "type" : "keyword"
            },
            "teachmode" : {
               "type" : "keyword"
            },
            "teachplan" : {
               "analyzer" : "ik_max_word",
               "search_analyzer" : "ik_smart",
               "type" : "text"
            },
            "users" : {
               "index" : false,
               "type" : "text"
            },
            "valid" : {
               "type" : "keyword"
            }
         }
      }
   },
   "template" : "xc_course"
}
  1. logstash配置mysql.conf

1、ES采用UTC时区问题

ES采用UTC 时区,比北京时间早8小时,所以ES读取数据时让最后更新时间加8小时

where timestamp > date_add(:sql_last_value,INTERVAL 8 HOUR)

2、logstash每个执行完成会在/config/logstash_metadata记录执行时间下次以此时间为基准进行增量同步数据到索引库。

  1. 启动
.\logstash.bat -f ..\config\mysql.conf
  1. 后端代码

7.1 Controller

@RestController
@RequestMapping("/search/course")
public class EsCourseController  {
    
    @Autowired
    EsCourseService esCourseService;

    @GetMapping(value="/list/{page}/{size}")
    public QueryResponseResult<CoursePub> list(@PathVariable("page") int page, @PathVariable("size") int size, CourseSearchParam courseSearchParam) {
        return esCourseService.list(page,size,courseSearchParam);
    }
}

7.2 Service

@Service
public class EsCourseService {
    @Value("${heima.course.source_field}")
    private String source_field;

    @Autowired
    RestHighLevelClient restHighLevelClient;

    //课程搜索
    public QueryResponseResult<CoursePub> list(int page, int size, CourseSearchParam courseSearchParam) {
        if (courseSearchParam == null) {
            courseSearchParam = new CourseSearchParam();
        }
        //1创建搜索请求对象
        SearchRequest searchRequest = new SearchRequest("xc_course");

        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        //过虑源字段
        String[] source_field_array = source_field.split(",");
        searchSourceBuilder.fetchSource(source_field_array, new String[]{});
        //创建布尔查询对象
        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
        //搜索条件
        //根据关键字搜索
        if (StringUtils.isNotEmpty(courseSearchParam.getKeyword())) {
            MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery(courseSearchParam.getKeyword(), "name", "description", "teachplan")
                    .minimumShouldMatch("70%")
                    .field("name", 10);
            boolQueryBuilder.must(multiMatchQueryBuilder);
        }
        if (StringUtils.isNotEmpty(courseSearchParam.getMt())) {
            //根据一级分类
            boolQueryBuilder.filter(QueryBuilders.termQuery("mt", courseSearchParam.getMt()));
        }
        if (StringUtils.isNotEmpty(courseSearchParam.getSt())) {
            //根据二级分类
            boolQueryBuilder.filter(QueryBuilders.termQuery("st", courseSearchParam.getSt()));
        }
        if (StringUtils.isNotEmpty(courseSearchParam.getGrade())) {
            //根据难度等级
            boolQueryBuilder.filter(QueryBuilders.termQuery("grade", courseSearchParam.getGrade()));
        }

        //设置boolQueryBuilder到searchSourceBuilder
        searchSourceBuilder.query(boolQueryBuilder);
        //设置分页参数
        if (page <= 0) {
            page = 1;
        }
        if (size <= 0) {
            size = 12;
        }
        //起始记录下标
        int from = (page - 1) * size;
        searchSourceBuilder.from(from);
        searchSourceBuilder.size(size);

        //设置高亮
        HighlightBuilder highlightBuilder = new HighlightBuilder();
        highlightBuilder.preTags("<font class='eslight'>");
        highlightBuilder.postTags("</font>");
        //设置高亮字段
//        <font class='eslight'>node</font>学习
        highlightBuilder.fields().add(new HighlightBuilder.Field("name"));
        searchSourceBuilder.highlighter(highlightBuilder);

        searchRequest.source(searchSourceBuilder);

        QueryResult<CoursePub> queryResult = new QueryResult();
        List<CoursePub> list = new ArrayList<CoursePub>();
        try {
            //2执行搜索
            SearchResponse searchResponse = restHighLevelClient.search(searchRequest, RequestOptions.DEFAULT);
            //3获取响应结果
            SearchHits hits = searchResponse.getHits();
            long totalHits=hits.getTotalHits().value;
            //匹配的总记录数
//            long totalHits = hits.totalHits;
            queryResult.setTotal(totalHits);
            SearchHit[] searchHits = hits.getHits();
            for (SearchHit hit : searchHits) {
                CoursePub coursePub = new CoursePub();
                //源文档
                Map<String, Object> sourceAsMap = hit.getSourceAsMap();
                //取出id
                String id = (String) sourceAsMap.get("id");
                coursePub.setId(id);
                //取出name
                String name = (String) sourceAsMap.get("name");
                //取出高亮字段name
                Map<String, HighlightField> highlightFields = hit.getHighlightFields();
                if (highlightFields != null) {
                    HighlightField highlightFieldName = highlightFields.get("name");
                    if (highlightFieldName != null) {
                        Text[] fragments = highlightFieldName.fragments();
                        StringBuffer stringBuffer = new StringBuffer();
                        for (Text text : fragments) {
                            stringBuffer.append(text);
                        }
                        name = stringBuffer.toString();
                    }
                }
                coursePub.setName(name);
                //图片
                String pic = (String) sourceAsMap.get("pic");
                coursePub.setPic(pic);
                //价格
                Double price = null;
                try {
                    if (sourceAsMap.get("price") != null) {
                        price = (Double) sourceAsMap.get("price");
                    }

                } catch (Exception e) {
                    e.printStackTrace();
                }
                coursePub.setPrice(price);
                //旧价格
                Double price_old = null;
                try {
                    if (sourceAsMap.get("price_old") != null) {
                        price_old = (Double) sourceAsMap.get("price_old");
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }
                coursePub.setPrice_old(price_old);
                //将coursePub对象放入list
                list.add(coursePub);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }

        queryResult.setList(list);
        QueryResponseResult<CoursePub> queryResponseResult = new QueryResponseResult<CoursePub>(CommonCode.SUCCESS, queryResult);

        return queryResponseResult;
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/987082.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SpringCloud微服务--Eureka服务注册中心】

SpringCloud微服务全家桶学习笔记【持续更新】 gitee仓库 内容&#xff1a;SpringCloud SpringCloud alibaba 技术栈&#xff1a;Java8mavengit&#xff0c;githubNginxRabbitMQSpringBoot2.0 微服务架构概述 微服务架构是一种架构模式&#xff0c;它提倡将单一应用程序划…

sqlserver 各种集合、区间、 时间轴(持更)

1.所有有交集的区间 场景&#xff1a;在事件表里查找某年员工的岗位系数&#xff0c;并计算其加权平均数。case1&#xff1a;该员工是老员工&#xff0c;从2020年一直到2049年。case2&#xff1a;该员工是老员工&#xff0c;但是今年离职。case3&#xff1a;该员工是今年的新员…

亚马逊云科技与伊克罗德推出AI绘画解决方案——imAgine

在过去的数月中&#xff0c;亚马逊云科技已经推出了多篇介绍如何在亚马逊云科技上部署Stable Diffusion&#xff0c;或是如何结合Amazon SageMaker与Stable Diffusion进行模型训练和推理任务的内容。 为了帮助客户快速、安全地在亚马逊云科技上构建、部署和管理应用程序&#x…

OpenCV之形态学操作

形态学操作包含以下操作&#xff1a; 腐蚀 (Erosion)膨胀 (Dilation)开运算 (Opening)闭运算 (Closing)形态梯度 (Morphological Gradient)顶帽 (Top Hat)黑帽(Black Hat) 其中腐蚀和膨胀操作是最基本的操作&#xff0c;其他操作由这两个操作变换而来。 腐蚀 用一个结构元素…

谷歌Chrome庆祝15周年,推出全新设计!了解最新信息!

谷歌浏览器本月将满15岁&#xff0c;为了纪念这一时刻&#xff0c;它正在进行改造和升级。 这一点意义重大&#xff0c;因为Chrome在全球有数十亿人使用&#xff0c;因此谷歌所做的每一项改变都会对互联网以及这些人与互联网的互动方式产生巨大影响。即使你不使用Chrome或不关…

深入了解HTTP代理的工作原理

HTTP代理是一种常见的网络代理方式&#xff0c;它可以帮助用户隐藏自己的IP地址&#xff0c;保护个人隐私和安全。了解HTTP代理的工作原理对于使用HTTP代理的用户来说非常重要。本文将深入介绍HTTP代理的工作原理。 代理服务器的作用 HTTP代理的工作原理基于代理服务器的作用。…

一文讲透【静态脱敏实操】

1&#xff1a;直接上工具类 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.16</version> </dependency>2:Hutool 支持的脱敏数据类型 现阶段最新版本的 Hutool 支持的脱敏数据类…

浅析目标检测入门算法:YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4

本文致力于让读者对以下这些模型的创新点和设计思想有一个大体的认识&#xff0c;从而知晓YOLOv1到YOLOv4的发展源流和历史演进&#xff0c;进而对目标检测技术有更为宏观和深入的认知。本文讲解的模型包括&#xff1a;YOLOv1,SSD,YOLOv2,YOLOv3,CenterNet,EfficientDet,YOLOv4…

LaTeX总结-2023年9月8日

1. LaTeX总结 文章目录 1. LaTeX总结1.1. 定义作者&#xff0c;通讯作者&#xff0c;地址&#xff0c;宏包1.1.1. Example 11.1.2. Example 21.1.3. 特殊符号——作者标注注 1.2. 调整字体1.2.1. 数学模式下使用正体1.2.2. LaTeX内使用中文1.2.3. 正文文字 1.3. 常用符号及字母…

java - lua - redis 完成商品库存的删减

java调用lua脚本完成对商品库存的管理 主页链接 微风轻吟挽歌的主页 如若有帮助请帮忙点赞 //lua脚本 获取到内存不够的商品StringBuilder sb new StringBuilder();//定义一个数组存储可能缺少库存的值sb.append(" local table {} ");//获取值sb.append(" …

Java中的内部类

文章目录 &#x1f412;个人主页&#x1f3c5;JavaSE系列专栏&#x1f4d6;前言&#xff1a;&#x1f380;什么是内部类&#x1f415;内部类的分类&#x1f9f8;成员内部类&#x1f9f8;静态内部类&#x1f9f8;局部内部类&#x1f9f8;匿名内部类 &#x1f415;内部类的特点&a…

navicat设置mysql自动根据插入时间更新时间

使用navicat时间字段要素根据当前数据插入时间自动填充&#xff0c;可设置now()函数

CentOS 8 通过YUM方式升级最新内核

CentOS 8 通过YUM方式升级最新内核 查看当前内核 uname -r 4.18.0-193.6.3.el8_2.x86_64导入 ELRepo 仓库的公钥&#xff1a; rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org安装升级内核相关的yum源仓库(安装 ELRepo 仓库的 yum 源) yum install https://www…

栈和队列的概念及实现

文章目录 一、栈1.栈的概念2.数组作为顺序栈存储方式特点3.链栈特点4.代码实现栈(1).Stack.h(2).Stack.c(3).Test.c 二、队列2.区分顺序存储的队空和队满的三种处理方式3.代码实现(1).Quene.h(2).Quene.c 一、栈 1.栈的概念 栈的本质就是线性表&#xff0c;但它和队列一样&…

Nginx 学习(九)集群概述与LVS工作模式的配置

一 集群 1 概述 通过高速网络将很多服务器集中起来一起提供同一种服务&#xff0c;在客户端看来就像是只有一个服务器可以在付出较低成本的情况下获得在性能、可靠性、灵活性方面的相对较高的收益任务调度是集群系统中的核心技术 2 目的 提高性能。如计算密集型应用&…

记LGSVL Map Annotation使用

导入点云 内置的点云导入器工具提供了将最流行的点云文件格式&#xff08;PCD、PLY、LAS、LAZ&#xff09;转换为可用于仿真的数据所需的所有功能。 要访问点云导入器窗口&#xff0c;请在 Unity 编辑器中打开模拟器项目&#xff0c;然后导航到 Simulator/Import Point Cloud…

java 前缀树的实现,敏感词的匹配和标记

目录 一、前缀树的介绍和定义1.前缀树的定义2.前缀树的结构 二、前缀树的实现1.向前缀树中增加词语2.向前缀树中删除词语3.对于使用前缀树进行词语标识&#xff1a;4.前缀树的实现代码 三、前缀树使用及测试1.向前缀树上增加词语2.根据输入匹配前缀树上的词语3.判断前缀树上是否…

Java 基于SpringBoot+Vue的社区医院管理系统的实现

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W,Csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 文章目录 1、效果演示2、 前言介绍3. 技术栈4系统设计4.1数据库设计4.2系统整体设计4.2.1 系统设计思想4.2.…

加拿大CCPSA-SOR/2016-152(婴儿床、摇篮和婴儿摇篮法规)认证要求解答

亚马逊加拿大站儿童床垫CCPSA认证: ●SOR/2016-152&#xff08;婴儿床、摇篮和婴儿摇篮法规&#xff09; ●SOR/2018-83&#xff08;含铅消费品法规&#xff09; ●SOR/2016-193&#xff08;表面涂层材料法规 - 铅&#xff09; ●SOR/2016-188&#xff08;邻苯二甲酸盐&…

大漠插件普通定制版内存调用与com对象调用方法

首先.打开大漠类库生成工具.拖入定制版的dll文件会生成各个语言的调用例子 如下图所示 详见视频教程 大漠插件普通定制版内存调用与com对象调用方法