LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607

news2025/1/15 16:43:43

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库:https://github.com/memcpy0/LeetCode-Conquest。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你一个有根节点 root 的二叉树,返回它 最深的叶节点的最近公共祖先

回想一下:

  • 叶节点 是二叉树中没有子节点的节点
  • 树的根节点的 深度0,如果某一节点的深度为 d,那它的子节点的深度就是 d+1
  • 如果我们假定 A 是一组节点 S最近公共祖先S 中的每个节点都在以 A 为根节点的子树中,且 A 的深度达到此条件下可能的最大值。

示例 1:

输入:root = [3,5,1,6,2,0,8,null,null,7,4]
输出:[2,7,4]
解释:我们返回值为 2 的节点,在图中用黄色标记。
在图中用蓝色标记的是树的最深的节点。
注意,节点 608 也是叶节点,但是它们的深度是 2 ,而节点 74 的深度是 3

示例 2:

输入:root = [1]
输出:[1]
解释:根节点是树中最深的节点,它是它本身的最近公共祖先。

示例 3:

输入:root = [0,1,3,null,2]
输出:[2]
解释:树中最深的叶节点是 2 ,最近公共祖先是它自己。

提示:

  • 树中的节点数将在 [1, 1000] 的范围内。
  • 0 <= Node.val <= 1000
  • 每个节点的值都是 独一无二 的。

注意: 本题与力扣 865 重复:https://leetcode-cn.com/problems/smallest-subtree-with-all-the-deepest-nodes/


解法1 递归


看上图(示例 1),这棵树的节点 3 , 5 , 2 3,5,2 3,5,2 都是最深叶节点 7 , 4 7,4 7,4 的公共祖先,但只有节点 2 2 2 是最近的公共祖先。

如果我们要找的节点只在左子树中,那么最近公共祖先也必然只在左子树中。对于本题,如果左子树的最大深度比右子树的大,那么最深叶结点就只在左子树中,所以最近公共祖先也只在左子树中。反过来说,如果右子树的最大深度大于左子树,那么最深叶结点就只在右子树中,所以最近公共祖先也只在右子树中。

如果左右子树的最大深度一样呢?当前节点一定是最近公共祖先吗?不一定。比如节点 1 1 1 的左右子树最深叶节点 0 , 8 0,8 0,8 的深度都是 2 2 2 ,但该深度并不是全局最大深度,所以节点 1 1 1 并不能是答案。

根据以上讨论,正确做法如下:

  • 递归这棵二叉树,同时维护全局最大深度 maxDepth \textit{maxDepth} maxDepth
  • 在「」的时候往下传 d e p t h depth depth ,用来表示当前节点的深度
  • 在「」的时候往上传当前子树最深叶节点的深度
  • 设左子树最深叶节点的深度为 leftMaxDepth \textit{leftMaxDepth} leftMaxDepth ,右子树最深叶节点的深度为 rightMaxDepth \textit{rightMaxDepth} rightMaxDepth 。如果 leftMaxDepth = rightMaxDepth = maxDepth \textit{leftMaxDepth}=\textit{rightMaxDepth}=\textit{maxDepth} leftMaxDepth=rightMaxDepth=maxDepth ,那么更新答案为当前节点。注意这并不代表我们找到了答案,如果后面发现了更深的叶节点,那么答案还会更新。
class Solution {
public:
    TreeNode *lcaDeepestLeaves(TreeNode *root) {
        TreeNode *ans = nullptr;
        int max_depth = -1; // 全局最大深度
        function<int(TreeNode*, int)> dfs = [&](TreeNode *node, int depth) {
            if (node == nullptr) {
                max_depth = max(max_depth, depth); // 维护全局最大深度
                return depth;
            }
            int left_max_depth = dfs(node->left, depth + 1); // 获取左子树最深叶节点的深度
            int right_max_depth = dfs(node->right, depth + 1); // 获取右子树最深叶节点的深度
            if (left_max_depth == right_max_depth && left_max_depth == max_depth)
                ans = node;
            return max(left_max_depth, right_max_depth); // 当前子树最深叶节点的深度
        };
        dfs(root, 0);
        return ans;
    }
};

复杂度分析:

  • 时间复杂度: O ( n ) \mathcal{O}(n) O(n) 。每个节点都会恰好访问一次。
  • 空间复杂度: O ( n ) \mathcal{O}(n) O(n) 。最坏情况下,二叉树是一条链,递归需要 O(n)\mathcal{O}(n)O(n) 的栈空间。

解法2 自底向上

也可以不用全局变量,而是把每棵子树都看成是一个「子问题」,即对于每棵子树,我们需要知道:

  • 这棵子树最深叶结点的深度。这里是指叶子在这棵子树内的深度,而不是在整棵二叉树的视角下的深度。相当于这棵子树的高度
  • 这棵子树的最深叶结点的最近公共祖先 lca \textit{lca} lca

分类讨论:

  • 设子树的根节点为 n o d e node node n o d e node node 的左子树的高度为 leftHeight \textit{leftHeight} leftHeight n o d e node node 的右子树的高度为 rightHeight \textit{rightHeight} rightHeight
  • 如果 l e f t H e i g h t > r i g h t H e i g h t leftHeight>rightHeight leftHeight>rightHeight ,那么子树的高度为 leftHeight + 1 \textit{leftHeight} + 1 leftHeight+1 lca \textit{lca} lca 是左子树的 lca \textit{lca} lca
  • 如果 leftHeight < rightHeight \textit{leftHeight} < \textit{rightHeight} leftHeight<rightHeight ,那么子树的高度为 r i g h t H e i g h t + 1 rightHeight+1 rightHeight+1 l c a lca lca 是右子树的 l c a lca lca
  • 如果 leftHeight = rightHeight \textit{leftHeight} = \textit{rightHeight} leftHeight=rightHeight ,那么子树的高度为 leftHeight + 1 \textit{leftHeight} + 1 leftHeight+1 l c a lca lca 就是 n o d e node node 。反证法:如果 l c a lca lca 在左子树中,那么 l c a lca lca 不是右子树的最深叶结点的祖先,这不对;如果 l c a lca lca 在右子树中,那么 l c a lca lca 不是左子树的最深叶结点的祖先,这也不对;如果 l c a lca lca n o d e node node 的上面,那就不符合「最近」的要求。所以 l c a lca lca 只能是 n o d e node node
class Solution {
    pair<int, TreeNode*> dfs(TreeNode *node) {
        if (node == nullptr)
            return {0, nullptr};
        auto [left_height, left_lca] = dfs(node->left);
        auto [right_height, right_lca] = dfs(node->right);
        if (left_height > right_height) // 左子树更高
            return {left_height + 1, left_lca};
        if (left_height < right_height) // 右子树更高
            return {right_height + 1, right_lca};
        return {left_height + 1, node}; // 一样高
    }

public:
    TreeNode *lcaDeepestLeaves(TreeNode *root) {
        return dfs(root).second;
    }
};

复杂度分析:

  • 时间复杂度: O ( n ) \mathcal{O}(n) O(n) 。每个节点都会恰好访问一次。
  • 空间复杂度: O ( n ) \mathcal{O}(n) O(n) 。最坏情况下,二叉树是一条链,递归需要 O ( n ) \mathcal{O}(n) O(n) 的栈空间。

更简洁的写法是:

class Solution {
public:
    int depth[1010];
    TreeNode* lcaDeepestLeaves(TreeNode* root) {
        if (root == nullptr) return nullptr;
        TreeNode* left = root->left, *right = root->right;
        TreeNode* lcaLeft = lcaDeepestLeaves(root->left), *lcaRight = lcaDeepestLeaves(root->right);
        int dl = left ? depth[left->val] : 0, dr = right ? depth[right->val] : 0;
        depth[root->val] = max(dl, dr) + 1;
        if (dl > dr) return lcaLeft;
        if (dr > dl) return lcaRight;
        return root;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/986023.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023高教社杯数学建模C题思路模型 - 蔬菜类商品的自动定价与补货决策

# 1 赛题 在生鲜商超中&#xff0c;一般蔬菜类商品的保鲜期都比较短&#xff0c;且品相随销售时间的增加而变差&#xff0c; 大部分品种如当日未售出&#xff0c;隔日就无法再售。因此&#xff0c; 商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜…

X86_64函数调用汇编程序分析

X86_64函数调用汇编程序分析 1 X86_64寄存器使用标准2 对应代码的分析2.1 main函数及其对应的汇编程序2.1.1 main的C代码实现2.1.2 main函数对应汇编及其分析2.1.3 执行完成之后栈的存放情况 2.2 test_fun_a函数及其对应的汇编程序2.2.1 test_fun_a函数的C实现2.2.2 test_fun_a…

【工作技术栈】【源码解读】一次springboot注入bean失败问题的排查过程

目录 前言现象分析原因解决方法思考感悟 前言 对这次的过程排查如果要形容的话&#xff0c;我觉得更像是悬疑剧&#xff0c;bean not found 这种错误&#xff0c;已经看腻了&#xff0c;甚至有时候都看不起这种错误&#xff0c;但是似乎这个想法被springboot听见了&#xff0c…

spring-security-源码解析+自定义拓展

1.参考文档 https://docs.spring.io/spring-security/reference/5.7/servlet/architecture.html 1.1.各种filterchain 1.1.1.SecurityFilterChain 1.1.2.springSecurityFilterChain 1.1.3.Security Filters 2.几个重要的注解 2.1.EnableXXX EnableWebMvcSecurity–deprecate…

C语言之初阶总结篇

目录 NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 NO.7 NO.8 NO.9 NO.10 NO.11 NO.12.概念tips NO.13.求最小公倍数 NO.14.最大公因数 NO.15.输入读取字符串 NO.16.倒置字符串 今天是一些C语言题目&#xff0c;最近天气炎热&#xff0c;多喝水。 NO.1 下面程序执行后&am…

浅谈泛在电力物联网、能源互联网与虚拟电厂

导读&#xff1a;从能源互联网推进受阻&#xff0c;到泛在电力物联网名噪一时&#xff0c;到虚拟电厂再次走向火爆&#xff0c;能源领域亟需更进一步的数智化发展。如今&#xff0c;随着新型电力系统建设推进&#xff0c;虚拟电厂有望迎来快速发展。除了国网和南网公司下属的电…

LLMs之Baichuan 2:《Baichuan 2: Open Large-scale Language Models》翻译与解读

LLMs之Baichuan 2&#xff1a;《Baichuan 2: Open Large-scale Language Models》翻译与解读 导读&#xff1a;2023年9月6日&#xff0c;百川智能重磅发布Baichuan 2。科技论文主要介绍了Baichuan 2&#xff0c;一个开源的大规模语言模型&#xff0c;以及其在多个领域的性能表现…

与 vmx86 驱动程序的版本不匹配: 预期为 410.0,实际为 401.0

与 vmx86 驱动程序的版本不匹配: 预期为 410.0&#xff0c;实际为 401.0。 驱动程序“vmx86.sys”的版本不正确。请尝试重新安装 VMware Workstation。 我电脑历史上装过几个版本的vmware workstation: 怀疑是不兼容版本生成的vmx.86.sys 在系统中和该软件冲突&#xff0c;又没…

【完整代码】2023数学建模国赛C题代码--蔬菜类商品的自动定价与补货决策

C 题 蔬菜类商品的自动定价与补货决策 在生鲜商超中&#xff0c;一般蔬菜类商品的保鲜期都比较短&#xff0c;且品相随销售时间的增加而变差&#xff0c; 大部分品种如当日未售出&#xff0c;隔日就无法再售。因此&#xff0c;商超通常会根据各商品的历史销售和需 求情况每天进…

java+ssh+mysql智能化办公管理系统

项目介绍&#xff1a; 本系统为基于jspsshmysql的OA智能办公管理系统&#xff0c;包含管理员、领导、员工角色&#xff0c;功能如下&#xff1a; 管理员&#xff1a;公告信息&#xff1b;工作计划&#xff1b;公司资料&#xff1b;部门管理&#xff1b;员工管理&#xff1b;员…

软件测试/测试开发丨Linux进阶命令

点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接&#xff1a;https://ceshiren.com/t/topic/27139 一、Linux进阶命令学习 curljq 二、curl简介 curl 是一个发送请求数据给服务器的工具 curl支持的协议有&#xff1a;FTP、FTPS、HTTP、HTTP、SFTP…

深度学习推荐系统(七)NFM模型及其在Criteo数据集上的应用

深度学习推荐系统(七)NFM模型及其在Criteo数据集上的应用 1 NFM模型原理及其实现 1.1 NFM模型原理 无论是 FM&#xff0c;还是其改进模型FFM&#xff0c;归根结底是⼀个⼆阶特征交叉的模型。受组合爆炸问题的困扰&#xff0c;FM 几乎不可能扩展到三阶以上&#xff0c;这就不…

sonarqube的基本使用

操作截图 下载一个中文插件。 插件安装成功&#xff0c;提示需要重启sonarqube。 通过maven的命令对代码进行测试 找到maven。 修改apache-maven-3.6.1\setting.xml。 通过以下命令对当前代码进行质量检测。 检测完毕。 回到sonarqube&#xff0c;看到刚刚检测的结果…

【Unity3D赛车游戏优化篇】【十】汽车粒子特效和引擎咆哮打造极速漂移

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

Nginx 学习(十)高可用中间件的配置与实现

一 Keepalived热备 1 概述 调度器出现单点故障&#xff0c;如何解决?Keepalived实现了高可用集群Keepalived最初是为LVS设计的&#xff0c;专门监控各服务器节点的状态Keepalived后来加入了VRRP功能&#xff0c;防止单点故障 2 运行原理 Keepalived检测每个服务器节点状…

湖南省副省长秦国文一行调研考察亚信科技

9月5日&#xff0c;湖南省人民政府党组成员、副省长秦国文一行到亚信科技调研考察&#xff0c;亚信科技高级副总裁陈武主持接待。 图&#xff1a;双方合影 在亚信科技创新展示中心&#xff0c;秦国文了解了亚信科技在5G、算力网络、人工智能、大数据等前沿领域的创新探索&…

LeetCode 865. Smallest Subtree with all the Deepest Nodes【树,DFS,BFS,哈希表】1534

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

AVLTree模拟实现

一、常用的搜索逻辑 1、暴力搜索 O(N) 2、二分搜索 前提是有序&#xff0c;可以先用O(NlogN)排序一次&#xff0c;后续每次查找都是logN。 缺点&#xff1a;快排需要容器有随机访问功能&#xff0c;即为顺序表等。 如果不仅要搜索&#xff0c;还要插入删除&#xff0c;此时…

修复 ChatGPT 发生错误的问题

目录 ChatGPT 发生错误&#xff1f;请参阅如何修复连接错误&#xff01; 修复 ChatGPT 发生错误的问题 基本故障排除技巧 检查 ChatGPT 的服务器状态 检查 API 限制 检查输入格式 清除浏览数据 香港DSE是什么&#xff1f; 台湾指考是什么&#xff1f; 王湘浩 生平 …

如何安装安卓(Android 7.0+)CA根证书

简介 写这个教程时&#xff0c;已经是2023年&#xff0c;现在最新的安卓系已经是Android 13 。从Android7.0以后系统不再信任用户的证书&#xff0c;导致我们在使用一些网络调试工具时非常不便&#xff0c;为了解决这个问题&#xff0c;本教程将教你如何一步步操作&#xff0c…