生成订单30分钟未支付,则自动取消,该怎么实现?

news2024/9/30 23:26:59

今天给大家上一盘硬菜,并且是支付中非常重要的一个技术解决方案,有这块业务的同学注意自己试一把了哈!
在这里插入图片描述

在开发中,往往会遇到一些关于延时任务的需求。例如

生成订单30分钟未支付,则自动取消

生成订单60秒后,给用户发短信

对上述的任务,我们给一个专业的名字来形容,那就是延时任务。

那么这里就会产生一个问题,这个延时任务和定时任务的区别究竟在哪里呢?一共有如下几点区别

定时任务有明确的触发时间,延时任务没有

定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期

定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务

下面,我们以判断订单是否超时为例,进行方案分析

方案分析

(1)数据库轮询

思路

该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作

实现

当年早期是用quartz来实现的(实习那会的事),简单介绍一下

maven项目引入一个依赖如下所示
下面展示一些 内联代码片

<dependency>
	<groupId>org.quartz-scheduler</groupId>
        <artifactId>quartz</artifactId>
        <version>2.2.2</version>
</dependency>

调用Demo类MyJob如下所示

public class MyJob implements Job {

    public void execute(JobExecutionContext context)
            throws JobExecutionException {
        System.out.println("要去数据库扫描啦。。。");
    }

    public static void main(String[] args) throws Exception {

        // 创建任务
        JobDetail jobDetail = JobBuilder.newJob(MyJob.class)
                .withIdentity("job1", "group1").build();

        // 创建触发器 每3秒钟执行一次
        Trigger trigger = TriggerBuilder
                .newTrigger()
                .withIdentity("trigger1", "group3")
                .withSchedule(
                        SimpleScheduleBuilder.simpleSchedule()
                                .withIntervalInSeconds(3).repeatForever())
                .build();

        Scheduler scheduler = new StdSchedulerFactory().getScheduler();
        // 将任务及其触发器放入调度器
        scheduler.scheduleJob(jobDetail, trigger);
        // 调度器开始调度任务
        scheduler.start();
    }
}

运行代码,可发现每隔3秒,输出如下

要去数据库扫描啦。。。

优缺点

优点:简单易行,支持集群操作

缺点:

(1)对服务器内存消耗大

(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟

(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大

(2)JDK的延迟队列

思路

该方案是利用JDK自带的DelayQueue来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。

DelayedQueue实现工作流程如下图所示

在这里插入图片描述

Poll():获取并移除队列的超时元素,没有则返回空

take():获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。

实现

定义一个类OrderDelay实现Delayed,代码如下

public class OrderDelay implements Delayed {
    private String orderId;
    private long timeout;

    OrderDelay(String orderId, long timeout) {
        this.orderId = orderId;
        this.timeout = timeout + System.nanoTime();
    }

    public int compareTo(Delayed other) {

        if (other == this)
            return 0;

        OrderDelay t = (OrderDelay) other;
        long d = (getDelay(TimeUnit.NANOSECONDS) - t
                .getDelay(TimeUnit.NANOSECONDS));

        return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
    }

    // 返回距离你自定义的超时时间还有多少
    public long getDelay(TimeUnit unit) {
        return unit.convert(timeout - System.nanoTime(),TimeUnit.NANOSECONDS);
    }

    void print() {
        System.out.println(orderId+"编号的订单要删除啦。。。。");
    }
}

运行的测试Demo为,我们设定延迟时间为3秒

public class DelayQueueDemo {
     public static void main(String[] args) {  
            List<String> list = new ArrayList<String>();  
            list.add("00000001");  
            list.add("00000002");  
            list.add("00000003");  
            list.add("00000004");  
            list.add("00000005");  

            DelayQueue<OrderDelay> queue = newDelayQueue<OrderDelay>();  

            long start = System.currentTimeMillis();  
            for(int i = 0;i<5;i++){  

                //延迟三秒取出
                queue.put(new OrderDelay(list.get(i),  
                        TimeUnit.NANOSECONDS.convert(3,TimeUnit.SECONDS)));  
                    try {  
                         queue.take().print();  
                         System.out.println("After " +  
                                 (System.currentTimeMillis()-start) + " MilliSeconds");  
                } catch (InterruptedException e) {}  
            }  
        }  
}

输出如下

00000001编号的订单要删除啦。。。。
After 3003 MilliSeconds
00000002编号的订单要删除啦。。。。
After 6006 MilliSeconds
00000003编号的订单要删除啦。。。。
After 9006 MilliSeconds
00000004编号的订单要删除啦。。。。
After 12008 MilliSeconds
00000005编号的订单要删除啦。。。。
After 15009 MilliSeconds

可以看到都是延迟3秒,订单被删除

优缺点

优点:效率高,任务触发时间延迟低。

缺点:

(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现

OOM异常

(4)代码复杂度较高

(3)时间轮算法

思路

先上一张时间轮的图(这图到处都是啦)

在这里插入图片描述

时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。

这样可以看出定时轮由个3个重要的属性参数

ticksPerWheel(一轮的tick数)

tickDuration(一个tick的持续时间)

timeUnit(时间单位)

例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。

如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)

实现

我们用Netty的HashedWheelTimer来实现

给Pom加上下面的依赖

<dependency>
    <groupId>io.netty</groupId>
    <artifactId>netty-all</artifactId>
    <version>4.1.24.Final</version>
</dependency>

测试代码HashedWheelTimerTest如下所示

public class HashedWheelTimerTest {
    static class MyTimerTask implements TimerTask{
        boolean flag;
        public MyTimerTask(boolean flag){
            this.flag = flag;
        }

        public void run(Timeout timeout) throws Exception {
             System.out.println("要去数据库删除订单了。。。。");
             this.flag =false;
        }
    }

    public static void main(String[] argv) {
        MyTimerTask timerTask = new MyTimerTask(true);
        Timer timer = new HashedWheelTimer();
        timer.newTimeout(timerTask, 5, TimeUnit.SECONDS);

        int i = 1;
        while(timerTask.flag){
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            System.out.println(i+"秒过去了");
            i++;
        }
    }
}

输出如下

1秒过去了
2秒过去了
3秒过去了
4秒过去了
5秒过去了
要去数据库删除订单了。。。。
6秒过去了

优缺点

优点:效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。

缺点:

(1)服务器重启后,数据全部消失,怕宕机

(2)集群扩展相当麻烦

(3)因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常

(4)redis缓存

思路一

利用redis的zset,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值

添加元素:ZADD key score member [[score member] [score member] …]

按顺序查询元素:ZRANGE key start stop [WITHSCORES]

查询元素score:ZSCORE key member

移除元素:ZREM key member [member …]

测试如下

添加单个元素
redis> ZADD page_rank 10 google.com
(integer) 1

添加多个元素
redis> ZADD page_rank 9 baidu.com 8 bing.com
(integer) 2

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"
5) "google.com"
6) "10"

查询元素的score值
redis> ZSCORE page_rank bing.com
"8"

移除单个元素
redis> ZREM page_rank google.com
(integer) 1

redis> ZRANGE page_rank 0 -1 WITHSCORES
1) "bing.com"
2) "8"
3) "baidu.com"
4) "9"

那么如何实现呢?我们将订单超时时间戳与订单号分别设置为score和member,系统扫描第一个元素判断是否超时,具体如下图所示

在这里插入图片描述

实现一

public class AppTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;
    private static JedisPool jedisPool = new JedisPool(ADDR, PORT);

    public static Jedis getJedis() {
       return jedisPool.getResource();
    }

    //生产者,生成5个订单放进去
    public void productionDelayMessage(){
        for(int i=0;i<5;i++){

            //延迟3秒
            Calendar cal1 = Calendar.getInstance();
            cal1.add(Calendar.SECOND, 3);
            int second3later = (int) (cal1.getTimeInMillis() / 1000);
            AppTest.getJedis().zadd("OrderId",second3later,"OID0000001"+i);
            System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i);
        }
    }

    //消费者,取订单
    public void consumerDelayMessage(){
        Jedis jedis = AppTest.getJedis();
        while(true){
            Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1);
            if(items == null || items.isEmpty()){
                System.out.println("当前没有等待的任务");
                try {
                    Thread.sleep(500);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

                continue;
            }

            int  score = (int) ((Tuple)items.toArray()[0]).getScore();
            Calendar cal = Calendar.getInstance();
            int nowSecond = (int) (cal.getTimeInMillis() / 1000);

            if(nowSecond >= score){
                String orderId = ((Tuple)items.toArray()[0]).getElement();
                jedis.zrem("OrderId", orderId);
                System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
            }
        }
    }

    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();
        appTest.consumerDelayMessage();
    }
}

此时对应输出如下

在这里插入图片描述

可以看到,几乎都是3秒之后,消费订单。

然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码ThreadTest

public class ThreadTest {
    private static final int threadNum = 10;
    private static CountDownLatch cdl = newCountDownLatch(threadNum);

    static class DelayMessage implements Runnable{
        public void run() {
            try {
                cdl.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            AppTest appTest =new AppTest();
            appTest.consumerDelayMessage();
        }
    }

    public static void main(String[] args) {
        AppTest appTest =new AppTest();
        appTest.productionDelayMessage();

        for(int i=0;i<threadNum;i++){
            new Thread(new DelayMessage()).start();
            cdl.countDown();
        }
    }
}`

输出如下所示

在这里插入图片描述

显然,出现了多个线程消费同一个资源的情况。

解决方案

(1)用分布式锁,但是用分布式锁,性能下降了,该方案不细说。

(2)对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将consumerDelayMessage()方法里的

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    jedis.zrem("OrderId", orderId);
    System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
}

修改为

if(nowSecond >= score){
    String orderId = ((Tuple)items.toArray()[0]).getElement();
    Long num = jedis.zrem("OrderId", orderId);
    if( num != null && num>0){
        System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId);
    }
}

在这种修改后,重新运行ThreadTest类,发现输出正常了

思路二

该方案使用redis的Keyspace Notifications,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要redis版本2.8以上。

实现二

在redis.conf中,加入一条配置

notify-keyspace-events Ex
运行代码如下

public class RedisTest {
    private static final String ADDR = "127.0.0.1";
    private static final int PORT = 6379;

    private static JedisPool jedis = new JedisPool(ADDR, PORT);
    private static RedisSub sub = new RedisSub();

    public static void init() {
        new Thread(new Runnable() {
            public void run() {
                jedis.getResource().subscribe(sub, "__keyevent@0__:expired");
            }
        }).start();
    }

    public static void main(String[] args) throws InterruptedException {
        init();

        for(int i =0;i<10;i++){
            String orderId = "OID000000"+i;
            jedis.getResource().setex(orderId, 3, orderId);
            System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成");
        }
    }

    static class RedisSub extends JedisPubSub {
        public void onMessage(String channel, String message) {
            System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消");
        }
    }
}

输出如下

在这里插入图片描述

可以明显看到3秒过后,订单取消了

ps:redis的pub/sub机制存在一个硬伤,
Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。

因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。

优缺点

优点:

(1)由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性。

(2)做集群扩展相当方便

(3)时间准确度高

缺点:

(1)需要额外进行redis维护

(5)使用消息队列

我们可以采用rabbitMQ的延时队列。RabbitMQ具有以下两个特性,可以实现延迟队列

RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter

lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。

结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。

优缺点

优点:

高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。

缺点:

本身的易用度要依赖于rabbitMq的运维.因为要引用rabbitMq,所以复杂度和成本变高

文章来源:网络 版权归原作者所有
上文内容不用于商业目的,如涉及知识产权问题,请权利人联系小编,我们将立即处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/983868.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

sqlserver 查询数据显示行号

查询的数据需要增加一个行号 SELECT ROW_NUMBER() OVER(ORDER BY witd_wages_area ,witd_wages_type ,witd_department_id ,witd_give_out_time) 行号,ISNULL(witd_wages_area, 0) witd_wages_area ,witd_wages_type ,witd_department_id ,ISNULL(CONVERT(VARCHAR(7), witd_gi…

《逃出大英博物馆》B站千万播放,国风文化才是主流

8月两位UP主煎饼果仔呀、夏天妹妹联合共创了一支短剧《逃出大英博物馆》&#xff0c;自预告释出以来就受到广泛关注&#xff0c;微博话题超5亿次阅读。 2023年初&#xff0c;大英博物馆被盗的消息引发全球关注&#xff0c;有网友留言&#xff0c;希望“拍一部动画片&#xff0…

PyTorch多GPU训练模型——使用单GPU或CPU进行推理的方法

文章目录 1 问题描述2 模型保存方式3 单块GPU上加载模型4 CPU上加载模型5 总结 1 问题描述 PyTorch提供了非常便捷的多GPU网络训练方法&#xff1a;DataParallel和DistributedDataParallel。在涉及到一些复杂模型时&#xff0c;基本都是采用多个GPU并行训练并保存模型。但在推…

Liunx环境安装字体(simsun为例)

一&#xff1a;下载simsun字体文件包 链接&#xff1a;https://pan.baidu.com/s/1jelox8MalDJDWTyx4Z9ghw 提取码&#xff1a;tttt二&#xff1a;把解压后的simsun.ttf、simsun.ttc放到 /usr/share/fonts目录 三&#xff1a;安装 // 刷新字体缓存 [rootxxxxxx fonts]# fc-ca…

为什么大家会觉得考PMP没用?

一是在于PMP这套知识体系&#xff0c;是一套底层的项目管理逻辑框架&#xff0c;整体是比较抽象的。大家在学习工作之后&#xff0c;会有人告诉你很多职场的一些做事的规则&#xff0c;比如说对于沟通&#xff0c;有人就会告诉如何跟客户沟通跟同事相处等等&#xff0c;这其实就…

ebay运营思路|学会这些技巧,新店铺销量翻倍

Ebay是一个老牌的跨境电商&#xff0c;目前仍然是稳坐全球前列的平台&#xff0c;也是强手如云的地方&#xff0c;虽然相对于亚马逊他显得没有那么“卷”。 要在这片市场中抢占一番天地&#xff0c;首先一定要学会一些高效的运营技巧&#xff0c;今天就来分享一些Ebay运营技巧…

SVPWM的原理及法则推导和控制算法详解

空间电压矢量调制 SVPWM 技术 SVPWM是近年发展的一种比较新颖的控制方法&#xff0c;是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波&#xff0c;能够使输出电流波形尽 可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同&#xff0c;它…

chrome 谷歌浏览器 导出插件拓展和导入插件拓展

给同事部署 微软 RPA时&#xff0c;需要用到对应的chrome浏览器插件&#xff1b;谷歌浏览器没有外网是不能直接下载拓展弄了半小时后才弄好&#xff0c;竟发现没有现成的教程&#xff0c;遂补充&#xff1b; 如何打包导出 谷歌浏览器 地址栏敲 chrome://extensions/在对应的地…

如何配置远程访问以在外部网络中使用公司内部的OA办公系统——“cpolar内网穿透”

文章目录 前言1. 确认在内网下能够使用IP端口号登录OA办公系统2. 安装cpolar内网穿透3. 创建隧道映射内网OA系统服务端口4. 实现外网访问公司内网OA系统总结 前言 现在大部分公司都会在公司内网搭建使用自己的办公管理系统&#xff0c;如OA、ERP、金蝶等&#xff0c;员工只需要…

Instagram Shop如何开通?如何销售?最全面攻略

借助 Instagram 商店&#xff0c;品牌可以策划一系列可购物的商品&#xff0c;这些商品可通过其 Instagram 个人资料直接访问。这使得在应用程序上销售更容易&#xff0c;也被潜在客户发现。 一、什么是Instagram Shop&#xff1f; Instagram 商店为商家提供了一种在 Instagra…

3种等待方式,让你学会Selenium设置自动化等待测试脚本!

一、Selenium脚本为什么要设置等待方式&#xff1f;——即他的应用背景到底是什么 应用Selenium时&#xff0c;浏览器加载过程中无法立即显示对应的页面元素从而无法进行元素操作&#xff0c;需设置一定的等待时间去等待元素的出现。&#xff08;简单来说&#xff0c;就是设置…

组件以及组件间的通讯

组件 & 组件通讯 :::warning 注意 阅读本文章之前&#xff0c;你应该先要了解 ESM 模块化的 import export&#xff0c;如需要请查看 ESM 模块化。 ::: 上一篇有介绍到什么是组件化&#xff0c;就是把一个页面拆分成若干个小模块&#xff0c;然后重新组成一个页面。其中的…

iPhone 15有始终显示功能吗?它会出现在更多的苹果手机上吗?

和我们一样&#xff0c;你可能也在犹豫&#xff0c;iPhone 15将增加一个“始终显示”的功能&#xff0c;与一年前苹果Pro版手机的功能相匹配。然而&#xff0c;随着苹果9月活动的临近&#xff0c;没有太多传言可以让我们相信我们会如愿以偿。 你可能还记得&#xff0c;去年iPh…

导出Excel的技术分享-综合篇

导出Excel的技术分享-综合篇 简单的EasyExcel使用 /*** 最简单的写*/public void simpleWrite() {// 注意 simpleWrite在数据量不大的情况下可以使用&#xff08;5000以内&#xff0c;具体也要看实际情况&#xff09;&#xff0c;数据量大参照 重复多次写入// 写法1 JDK8// s…

GMSL技术让汽车数据传输更为高效(转)

目前&#xff0c;大部分车企都在其旗舰车型上配备了达到Level 2水平的自动驾驶技术&#xff0c;也就是高级自动驾驶辅助 ADAS系统。ADAS系统硬件主要由以下几部分组成&#xff0c;包括传感器、串行器、解串器、ADAS处理器等。 除了ADAS系统&#xff0c;包括传感器融合、音视频影…

Python实现SSA智能麻雀搜索算法优化LightGBM回归模型(LGBMRegressor算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法&#xff0c;在2020年提出&a…

山西电力市场日前价格预测【2023-09-08】

日前价格预测 预测明日&#xff08;2023-09-08&#xff09;山西电力市场全天平均日前电价为356.28元/MWh。其中&#xff0c;最高日前电价为409.23元/MWh&#xff0c;预计出现在19: 30。最低日前电价为323.46元/MWh&#xff0c;预计出现在24: 00。 价差方向预测 1&#xff1a; 实…

封装flexible.js,页面替换px为rem,实现不同分辨率适配

做的vue项目需要做个大屏&#xff0c;需要适配不同电脑的分配率&#xff0c;想到了rem&#xff0c;但是直接通过npm install flexible 安装的flexible.js默认设置的分辨率范围不符合现有的需求&#xff0c;所以就把安装包里面的flexible.js单独拿出来&#xff0c;然后改下分辨率…

idea的git入门

&#xff08;1&#xff09;安装好git之后&#xff0c;在idea的设置里面&#xff0c;按照下面三步&#xff0c;配置git &#xff08;2&#xff09;创建本地git仓库 选择本地仓库的根目录&#xff0c;点击ok &#xff08;3&#xff09;创建成功之后&#xff0c;会发现文件名称都变…

C/C++输出第二个整数 2019年9月电子学会青少年软件编程(C/C++)等级考试一级真题答案解析

目录 一、题目要求 1、编程实现 2、输入输出 二、解题思路 1、案例分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 2019年9月 C/C编程等级考试一级编程题 一、题目要求 1、编程实现 输入三个整数&#xff0c;把第二个输入的整数输出。 2、输入输出 输…