【云原生之k8s】k8s资源限制以及探针检查

news2025/2/26 22:54:49

文章目录

  • 一、资源限制
    • 1、资源限制的使用
    • 2、reuqest资源(请求)和limit资源(约束)
    • 3、Pod和容器的资源请求和限制
    • 4、官方文档示例
    • 5、资源限制实操
      • 5.1 编写yaml资源配置清单
      • 5.2 释放内存(node节点,以node01为例)
      • 5.3 创建资源
      • 5.4 跟踪查看pod状态
      • 5.5 查看容器日志
      • 5.6 删除pod
      • 5.7 修改yaml配置资源清单,提高mysql资源限制
      • 5.8 再次创建资源
      • 5.9 跟踪查看pod状态
      • 5.10 查看pod详细信息
      • 5.11 查看node资源使用
  • 二、健康检查
    • 1、健康检查的定义
    • 2、探针的三种规则
      • 2.1 livenessProbe存活探针
      • 2.2 readinessProbe就绪探针
      • 2.3 startupProbe启动探针(1.17版本新增)
      • 2.4 同时定义
    • 3、Probe支持的三种检测方法
      • 3.1 exec
      • 3.2 tcpSocket
      • 3.3 httpGet
    • 4、探测结果
    • 5、exec方式
    • 6、httpGet方式
    • 7、tcpSocket方式
  • 三、总结
    • 1. 探针
    • 2. 检查方式
    • 3. 常用的探针可选参数
    • 4、重启策略


一、资源限制

1、资源限制的使用

当定义Pod时可以选择性地为每个容器设定所需要的资源数量。最常见的可设定资源是CPU和内存大小,以及其他类型的资源。

2、reuqest资源(请求)和limit资源(约束)

  • 1.当为Pod中的容器指定了request资源时,调度器就使用该信息来决定将Pod调度到哪个节点上。当还为容器指定了limit资源时,kubelet就会确保运行的容器不会使用超出所设的limit资源量。kubelet还会为容器预留所设的request资源量,供该容器使用。
  • 2.如果Pod所在的节点具有足够的可用资源,容器可以使用超过所设置的request资源量。不过,容器不可以使用超出所设置的limit资源量。
  • 3.如果给容器设置了内存的limit值,但未设置内存的request值,Kubernetes会自动为其设置与内存limit相匹配的request值。类似的,如果给容器设置了CPU的limit值但未设置CPU的request值,则Kubernetes自动为其设置CPU的request值,并使之与CPU的limit值匹配。

3、Pod和容器的资源请求和限制

定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.cpu
定义创建容器时预分配的内存资源
spec.containers[].resources.requests.memory
定义创建容器时预分配的巨页资源
spec.containers[].resources.requests.hugepages-<size>
定义cpu的资源上限
spec.containers[].resources.limits.cpu
定义内存的资源上限
spec.containers[].resources.limits.memory
定义巨页的资源上限
spec.containers[].resources.limits.hugepages-<size>

4、官方文档示例

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

此例子中Pod有两个Container。每个Container 的请求为 0.25 cpu 和 64MiB(226 字节)内存, 每个容器的资源约束为 0.5 cpu 和 128MiB 内存。 你可以认为该 Pod 的资源请求为 0.5 cpu 和 128 MiB 内存,资源限制为 1 cpu 和 256MiB 内存。

5、资源限制实操

5.1 编写yaml资源配置清单

[root@master ~]# mkdir /opt/test
[root@master ~]# cd !$
cd /opt/test
[root@master test]# vim test1.yaml
 
apiVersion: v1
kind: Pod
metadata:
  name: test1
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

5.2 释放内存(node节点,以node01为例)

由于mysql对于内存的使用要求比较高,因此需要先检查内存的可用空间是否能够满足mysql的正常运行,若剩余内存不够,可对其进行释放操作。

查看内存

free -mH

在这里插入图片描述
内存总量为1.9G,实际使用1G,因此可有内存应该为0.9G左右。
但是由于有870M的内存被用于缓存,导致了free仅为86M。
86M剩余可用内存显然是不够用的,因此需要释放缓存。

手动释放缓存

echo [1\2\3] > /proc/sys/vm/drop_caches

在这里插入图片描述
0:0是系统默认值,默认情况下表示不释放内存,由操作系统自动管理
1:释放页缓存
2:释放dentries和inodes
3:释放所有缓存
注意:
如果因为是应用有像内存泄露、溢出的问题,从swap的使用情况是可以比较快速可以判断的,但free上面反而比较难查看。相反,如果在这个时候,我们告诉用户,修改系统的一个值,“可以”释放内存,free就大了。用户会怎么想?不会觉得操作系统“有问题”吗?所以说,既然核心是可以快速清空buffer或cache,也不难做到(这从上面的操作中可以明显看到),但核心并没有这样做(默认值是0),我们就不应该随便去改变它。
一般情况下,应用在系统上稳定运行了,free值也会保持在一个稳定值的,虽然看上去可能比较小。当发生内存不足、应用获取不到可用内存、OOM错误等问题时,还是更应该去分析应用方面的原因,如用户量太大导致内存不足、发生应用内存溢出等情况,否则,清空buffer,强制腾出free的大小,可能只是把问题给暂时屏蔽了。

5.3 创建资源

kubectl apply -f tets1.yaml
[root@master test]# kubectl apply -f test1.yaml 
pod/test1 created

5.4 跟踪查看pod状态

kubectl get pod -o wide -w
[root@master test]# kubectl get pod -o wide -w
NAME    READY   STATUS              RESTARTS   AGE   IP       NODE     NOMINATED NODE   READINESS GATES
test1   0/2     ContainerCreating   0          4s    <none>   node01   <none>           <none>
test1   2/2     Running             0          18s   10.244.1.55   node01   <none>           <none>
test1   1/2     OOMKilled           0          21s   10.244.1.55   node01   <none>           <none>
test1   2/2     Running             1          37s   10.244.1.55   node01   <none>           <none>
test1   1/2     OOMKilled           1          40s   10.244.1.55   node01   <none>           <none>
......

OOM(OverOfMemory)表示服务的运行超过了我们所设定的约束值。
Ready:2/2,status:Running说明该pod已成功创建并运行,但运行过程中发生OOM问题被kubelet杀死并重新拉起新的pod

5.5 查看容器日志

kubectl logs test1 -c web
[root@master test]# kubectl logs test1 -c web
/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
/docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
/docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh
10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/nginx/conf.d/default.conf
10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf
/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh
/docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-processes.sh
/docker-entrypoint.sh: Configuration complete; ready for start up
2021/11/06 08:31:23 [notice] 1#1: using the "epoll" event method
2021/11/06 08:31:23 [notice] 1#1: nginx/1.21.3
2021/11/06 08:31:23 [notice] 1#1: built by gcc 8.3.0 (Debian 8.3.0-6) 
2021/11/06 08:31:23 [notice] 1#1: OS: Linux 3.10.0-693.el7.x86_64
2021/11/06 08:31:23 [notice] 1#1: getrlimit(RLIMIT_NOFILE): 1048576:1048576
2021/11/06 08:31:23 [notice] 1#1: start worker processes
2021/11/06 08:31:23 [notice] 1#1: start worker process 31
2021/11/06 08:31:23 [notice] 1#1: start worker process 32

nginx启动正常,接下来查看mysql日志
kubectl logs test1 -c mysql

[root@master test]# kubectl logs test1 -c db2021-11-06 08:38:44+00:00 [Note] [Entrypoint]: Entrypoint script for MySQL Server 8.0.27-1debian10 started.2021-11-06 08:38:44+00:00 [Note] [Entrypoint]: Switching to dedicated user 'mysql'2021-11-06 08:38:44+00:00 [Note] [Entrypoint]: Entrypoint script for MySQL Server 8.0.27-1debian10 started.2021-11-06 08:38:44+00:00 [Note] [Entrypoint]: Initializing database files2021-11-06T08:38:44.274783Z 0 [System] [MY-013169] [Server] /usr/sbin/mysqld (mysqld 8.0.27) initializing of server in progress as process 412021-11-06T08:38:44.279965Z 1 [System] [MY-013576] [InnoDB] InnoDB initialization has started.2021-11-06T08:38:44.711420Z 1 [System] [MY-013577] [InnoDB] InnoDB initialization has ended.2021-11-06T08:38:45.777355Z 0 [Warning] [MY-013746] [Server] A deprecated TLS version TLSv1 is enabled for channel mysql_main2021-11-06T08:38:45.777389Z 0 [Warning] [MY-013746] [Server] A deprecated TLS version TLSv1.1 is enabled for channel mysql_main2021-11-06T08:38:45.898121Z 6 [Warning] [MY-010453] [Server] root@localhost is created with an empty password ! Please consider switching off the --initialize-insecure option./usr/local/bin/docker-entrypoint.sh: line 191:    41 Killed                  "$@" --initialize-insecure --default-time-zone=SYSTEM

锁定问题容器为mysql

5.6 删除pod

kubectl delete -f test1
[root@master test]# kubectl delete -f test1.yaml

5.7 修改yaml配置资源清单,提高mysql资源限制

[root@master test]# vim test1.yaml  
 
apiVersion: v1
kind: Pod
metadata:  
  name: test1
spec:  
  containers:  
  - name: web    
    image: nginx    
    env:    
    - name: WEB_ROOT_PASSWORD      
      value: "password"    
    resources:      
    requests:         
      memory: "64Mi"        
      cpu: "250m"      
    limits:        
      memory: "128Mi"        
      cpu: "500m"  
  - name: db    
    image: mysql    
    env:    
    - name: MYSQL_ROOT_PASSWORD      
      value: "password"    
    resources:      
    requests:        
      memory: "512Mi"        
      cpu: "0.5"      
    limits:        
      memory: "1024Mi"        
      cpu: "1"

5.8 再次创建资源

kubectl apply -f test1.yaml
[root@master test]# kubectl apply -f test1.yaml pod/test1 created

5.9 跟踪查看pod状态

kubectl get pod -o wide -w
[root@master test]# kubectl get pod -o wide -w

5.10 查看pod详细信息

kubectl describe pod test1
[root@master test]# kubectl describe pod test1

5.11 查看node资源使用

[root@master test]# kubectl describe node node01

node01的配置为2C2G。
CPU Requests分析:
nginx的requests为250m,mysql的requests为500m,因此node01的CPU Requests为750m,在node01的两个核中使用占比为37%。
CPU Limits分析:
nginx到的limit为500m,mysql的limit为1,因此node01到的CPU Limits为1500m,在node01的两个核中使用占比为75%。
Memory Requests分析:
nginx的requests为64Mi,mysql的requests为512Mi,因此node01的内存Requests为576Mi,在node01的2G内存中使用占比为30%。
Memory Limits分析:
nginx的limits为128Mi,mysql的limit为1Gi,因此node01的1152Mi,在node01的2G内存中使用占比为61%。

二、健康检查

1、健康检查的定义

在这里插入图片描述
健康检查又称为探针(Probe),是由kubelet对容器执行的定期诊断。

2、探针的三种规则

2.1 livenessProbe存活探针

判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据restartPolicy来设置Pod状态,如果容器不提供存活探针,则默认状态为Success。

2.2 readinessProbe就绪探针

判断容器是否准备好接受请求。**如果探测失败,端点控制器将从与Pod匹配的所有service endpoints中剔除删除该Pod的IP地址。**初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

2.3 startupProbe启动探针(1.17版本新增)

判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果匹配了startupProbe探测,则在startupProbe状态为Success之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。如果startupProbe失败,kubelet将杀死容器,容器将根据restartPolicy来重启。如果容器没有配置startupProbe,则默认状态为Success。

2.4 同时定义

以上三种规则可同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

3、Probe支持的三种检测方法

3.1 exec

在容器内执行执行命令,如果容器退出时返回码为0则认为诊断成功。

3.2 tcpSocket

对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

3.3 httpGet

对指定的端口和路径上的容器的IP地址执行httpGet请求。如果响应的状态码大于等于200且小于400(2xx和3xx),则诊断被认为是成功的。

4、探测结果

每次探测都将获得以下三种结果之一:
● 成功:容器通过了诊断
● 失败:容器未通过诊断
● 未知:诊断失败,因此不会采取任何行动

5、exec方式

vim exec.yaml
 
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness				#为了健康检查定义的标签
  name: liveness-exec
spec:						#定义了Pod中containers的属性
  containers:
  - name: liveness
    image: busybox
    args:						#传入的命令
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy;sleep 600
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      initialDelaySeconds: 5			#表示pod中容器启动成功后,多少秒后进行健康检查 
      periodSeconds: 5				#在首次健康检查后,下一次健康检查的间隔时间 5s

在配置文件中,可以看到Pod具有单个Container。该perioSeconds字段指定kubelet应该每5秒执行一次活动性探测。该initiaDelaySeconds字段告诉kubelet在执行第一个探测之前应该等待5秒。为了执行探测,kubelet cat /tmp/healthy在容器中执行命令。如果命令成功执行,则返回0,并且kubelet认为Container仍然重要。如果命令返回非0值,则kubelet将杀死Container并重启它。

  • 1.在这个配置文件中,可以看到Pod只有一个容器。
  • 2.容器中的command字段表示创建一个/tmp/live文件后休眠30秒,休眠结束后删除该文件,并休眠10分钟。
  • 3.仅使用livenessProbe存活探针,并使用exec检查方式,对/tmp/live文件进行存活检测。
  • 4.initialDelaySeconds字段表示kubelet在执行第一次探测前应该等待5秒。
  • 5.periodSeconds字段表示kubelet每隔5秒执行一次存活探测。
    在这里插入图片描述

6、httpGet方式

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在配置文件中,可以看到Pod具有单个Container。该periodSeconds字段指定kubectl应该每3秒执行一次活动性探测。该initiaDelaySeconds字段告诉kubelet在执行第一个探测之前应等待3秒。为了执行探测,kubectl将HTTP GET请求发送到Container中运行并在端口8080上侦听的服务器。如果服务器/healthz路径的处理程序返回成功代码,则kubectl会认为任何大于或等于400的代码均表示成功,其他代码都表示失败。
在这里插入图片描述

7、tcpSocket方式

定义TCP活动度探针

第三种类型的活动性探针使用TCP套接字,使用此配置,kubelet将尝试在指定端口上打开容器的套接字。如果可以建立连接,则认为该让其运行状况良好,如果不能,则认为该容器是故障容器。

apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

在这里插入图片描述
如图所示,TCP检查的配置与HTTP检查非常相似,此示例同时使用就绪和活跃度探针,容器启动5秒后,kubelet将发送第一个就绪探测器。这些尝试连接到goproxy端口8080上的容器。如果探测成功,则容器将标记为就绪,kubelet将继续每10秒运行一次检查。

除了就绪探针之外,此配置还包括活动探针。容器启动后15秒钟,kubelet将运行第一个活动谈着,就像就绪探针一样,这些尝试goproxy在端口8080上连接到容器。如果活动探针失败,则容器将重新启动。

三、总结

1. 探针

探针分为3种

  • 1.livenessProbe(存活探针)∶判断容器是否正常运行,如果失败则杀掉容器(不是pod),再根据重启策略是否重启容器
  • 2.readinessProbe(就绪探针)∶判断容器是否能够进入ready状态,探针失败则进入noready状态,并从service的endpoints中剔除此容器
  • 3.startupProbe∶判断容器内的应用是否启动成功,在success状态前,其它探针都处于无效状态

2. 检查方式

检查方式分为3种

  • 1.exec∶使用 command 字段设置命令,在容器中执行此命令,如果命令返回状态码为0,则认为探测成功
  • 2.httpget∶通过访问指定端口和url路径执行http get访问。如果返回的http状态码为大于等于200且小于400则认为成功
  • 3.tcpsocket∶通过tcp连接pod(IP)和指定端口,如果端口无误且tcp连接成功,则认为探测成功

3. 常用的探针可选参数

常用的探针可选参数有4个

  • 1.initialDelaySeconds∶ 容器启动多少秒后开始执行探测
  • 2.periodSeconds∶探测的周期频率,每多少秒执行一次探测
  • 3.failureThreshold∶探测失败后,允许再试几次
  • 4.timeoutSeconds ∶ 探测等待超时的时间

4、重启策略

Pod在遇到故障之后“重启”的动作Pod在遇到故障之后“重启”的动作

Always:当容器终止退出后,总是“重启”容器,默认策略

OnFailure:当容器异常退出(退出状态码非0)时,重启容器

Never:当容器终止退出,从不“重启”容器。

(注意:k8s中不支持重启Pod资源,只有删除重建,重建)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/9835.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Moonbeam Illuminate/22线上生态盛会|Derek开场演讲

TL;DR Derek&#xff1a;Moonbeam是我认为最佳的实现Web3梦想的平台。一年中近300个项目已经部署在了Moonbeam生态&#xff0c;发展显著优于行业平均。Moonbeam正在构建被成为“Connected Contracts”的原生跨链方案。Moonbeam基金会新设立Moonbeam加速器&#xff0c;帮助Moon…

时间序列预测之为何舍弃LSTM而选择Informer?(Informer模型解读)

LSTM的劣势 Figure 1: (a) LSTF can cover an extended period than the short sequence predictions, making vital distinction in policy-planning and investment-protecting. (b) The prediction capacity of existing methods limits LSTF’s performance. E.g., startin…

Nginx快速入门及配置文件结构

Nginx快速入门教程Nginx 简介Nginx 特性Nginx 架构Nginx 相比Apache的优点Nginx 的安装启动、停止和重新加载 Nginx 配置Nginx 配置文件结构Nginx 工作流程总结后言Nginx 简介 Nginx是 HTTP 和反向代理服务器&#xff0c;邮件代理服务器&#xff0c;以及 Igor Sysoev 最初编写…

传统防火墙与Web应用程序防火墙(WAF)的区别

前言 由于WEB应用防火墙&#xff08;WAF&#xff09;的名字中有“防火墙”三个字&#xff0c;因此很多人都会将它与传统防火墙混淆。实际上&#xff0c;二者之间的有着很大的差别。传统防火墙专注在网络层面&#xff0c;提供IP、端口防护。而WAF是专门为保护基于Web的应用程序…

学生用白炽灯好还是led灯好?2022最专业学生护眼灯推荐

现阶段的学生视力都普遍出现近视低龄化&#xff0c;所以在护眼方面&#xff0c;家长都非常重视的&#xff0c;有人问&#xff1a;学生用白炽灯好还是led灯好&#xff1f; 我的回答是LED灯更适合现在家庭使用&#xff0c;给大家分析一下。 白炽灯是由灯丝发热产生光亮&#xff…

多层串联拼接网络

🍿*★,*:.☆欢迎您/$:*.★* 🍿 目录 背景 正文 总结 背景描述

Pytorch ——特征图的可视化

文章目录前言一、torchvision.models._utils.IntermediateLayerGetter*注意&#xff1a;torcvision的最新版本0.13&#xff0c;已经取消了pretrainedTrue这个参数&#xff0c;并且打算在0.15版正式移除&#xff0c;如果用pretrained这个参数会出现warring警告。现在加载与训练权…

【项目实战】springboot+vue舞蹈课程在线学习系统-java舞蹈课程学习打卡系统的设计与实现

注意&#xff1a;该项目只展示部分功能&#xff0c;如需了解&#xff0c;评论区咨询即可。 本文目录1.开发环境2 系统设计2.1 背景意义2.2 技术路线2.3 主要研究内容3 系统页面展示3.1 学生3.2 教师页面3.3 管理员页面4 更多推荐5 部分功能代码5.1 查看学生打卡5.2 文件上传下载…

天翼云实时云渲染,助力打造世界VR产业大会云上之城

2022年11月12日&#xff0c;2022世界VR产业大会于江西南昌开幕。11月13日&#xff0c;以“共建元宇宙生态&#xff0c;点亮新数智未来”为主题的中国电信生态论坛召开。由天翼云携手新国脉数字文化股份有限公司&#xff08;简称“国脉文化”&#xff09;打造的元宇宙家园国脉大…

【力扣刷题】只出现一次的数字

&#x1f517; 题目链接 题目描述 给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 …

java类的练习 -- 声明一个接口(Calculability),接口中

java类的练习 – 声明一个接口(Calculability)&#xff0c;接口中… 题目 编写一个应用程序&#xff0c;实现以下功能&#xff1a; ①声明一个接口(Calculability)&#xff0c;接口中包含一个方法area()。 ②声明一个三角形类实现该接口&#xff0c;类名为Triangle&#xf…

React源码分析2-深入理解fiber

react16 版本之后引入了 fiber&#xff0c;整个架构层面的 调度、协调、diff 算法以及渲染等都与 fiber 密切相关。所以为了更好地讲解后面的内容&#xff0c;需要对 fiber 有个比较清晰的认知。本章将介绍以下内容&#xff1a; 为什么需要 fiberfiber 节点结构中的属性fiber 树…

AR眼镜新秀雷鸟创新,究竟能飞多远?

时隔近十年之后&#xff0c;消费级AR眼镜又重新高调回归大众视野。 自去年10月开始&#xff0c;以OPPO、小米为代表的国内大厂纷纷推出试验性AR眼镜&#xff0c;谷歌第二代AR眼镜更是作为压轴在I/O大会上重新回归&#xff0c;苹果多年来不断提及但始终“难产”的AR产品&#x…

平衡二叉树(AVL树)

1.简介 1.二叉排序树的问题: 如果原始是数据是排好序的(如1,2,3,4,5,6),那么最终创建的二叉排序树的结构就会变成一条斜线,类似于一条单链表,此时如果需要查找/插入某个元素就要一个一个元素的比较,这样就没有优势了.由于每次都要比较左子树,其查询速度甚至比单链表还慢; 2.对…

labview 写入文本到word报表(标签方法)

描述labview按预先定义的包含数个标签的模板&#xff0c;复制模板到新文件&#xff0c;写入文本到各标签位置。 图1 前面板 图2 程序框图 图3 Ms office report 图4 配置Ms office report的属性1 图5 配置Ms office report的属性2

在vue2项目中使用vue-quill-editor实现富文本编译器

1 安装 npm install vue-quill-editor --save 2 引入 有两种引入方式 &#xff08;1&#xff09;全局引入(main) import VueQuillEditor from vue-quill-editor//调用编辑器 // 样式 import quill/dist/quill.core.css import quill/dist/quill.snow.css import quill/dist…

浅谈无脚本自动化测试

在当今的企业环境中&#xff0c;软件测试不再被视为不必要的投资&#xff1b;相反&#xff0c;它已经上升到一种需要而不是奢侈品的水平。随着市场的不断变化和竞争的加剧&#xff0c;企业必须做一些让他们与竞争对手区分开来的事情。 为了使自己与众不同&#xff0c;公司必须提…

【1-系统架构演进过程】

特别说明:接下来我会和大家一起完成一个商城项目&#xff0c;这个项目涉及的内容以及技术不仅多&#xff0c;而且都是现在主流的开发技术&#xff0c;每天我会按时更新博客内容&#xff0c;详细记录学习的过程&#xff0c;感兴趣的同学可以和我一起完成&#xff0c;但是时间较长…

国际贸易详解:国际贸易主要有哪些分类标准和运输方式

国际贸易主要的分类标准包括按商品流向分为出口贸易&#xff0c;进口贸易和过境贸易&#xff0c;按商品形态分为有形贸易和无形贸易&#xff0c;按运输方式分为陆运贸易&#xff0c;海运贸易等。一、国际贸易主要有哪些分类标准 1、按商品流向分为出口贸易、进口贸易、过境贸易…

2022英特尔® FPGA中国技术周

本文图片均来自于2022英特尔 FPGA中国技术周线上会议 11.14 全新的中端和以边缘为中心的FPGA 英特尔 Agilex™ FPGA的下一代接口协议 11.15 Nios V: 基于FPGA的RISC-V处理器 英特尔 Quartus Prime开发软件 基于FPGA的人工智能开发套件 Case 使用oneAPI高级语言开发IP​ 将…