03 卷积操作图片

news2025/1/19 11:26:35

一、均值滤波

# 卷积操作
# 输入图片. input, 必须是4维tensor(图片数量, 图片高度, 图片的宽度, 图片的通道数)
# filters, 卷积核, 必须是4维的tensor(卷积核的高度和宽度, 输入图片的通道数, 卷积核的个数)
# strides, 步长, 卷积核在图片的各个维度上的移动步长, (1, 1, 1, 1)
# padding, 0填充, 'Valid'和'Same', valid表示不进行填充, same表示输入图片和输出图片大小保持一致.
# 输入数据的格式: data_format 'NHWC'
# tf.nn.conv2d()

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


moon = plt.imread('/newdisk/darren_pty/CNN/moonlanding.png')
print(moon.shape)

plt.figure(figsize=(10, 8))
plt.imshow(moon, cmap='gray')

plt.show()

plt.imshow是用来显示图像的函数,它可以将数组或矩阵转化为图像并显示。

plt.show是用来显示图像的函数,它会打开一个窗口来显示当前的图像,只有调用了这个函数,图像才会真正显示出来。

简单来说,plt.imshow是将数据变成图像,plt.show是将图像显示出来

plt.figure("Image")  创建图像窗口

均值滤波:

np.array([[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]]) //3x3 的矩阵

使用这样的矩阵来执行平滑操作,通过将每个像素的值替换为其周围像素值的平均值来减小图像中的噪声或细节。这个操作称为均值滤波。

np.array([[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]]).reshape(3, 3, 1, 1)

将这个矩阵重新塑造成一个 4 维数组,形状为 (3, 3, 1, 1)

# 均值滤波
input_img = tf.constant(moon.reshape(1, 474, 630, 1), dtype=tf.float32)
filters = tf.constant(np.array([[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]]).reshape(3, 3, 1, 1), dtype=tf.float32)
strides = [1, 1, 1, 1]
conv2d = tf.nn.conv2d(input=input_img, filters=filters, strides=strides, padding='SAME')
plt.figure(figsize=(10, 8))

# 4维图片转为2维图像
plt.imshow(conv2d.numpy().reshape(474, 630), cmap='gray') 

 

`tf.constant` 是 TensorFlow 中的一个函数,用于创建一个常量张量(tensor)。在 TensorFlow 中,张量是多维数组,可以包含标量、向量、矩阵等。

`tf.constant` 的基本语法如下:

tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)

参数说明:

- `value`:要创建的常量张量的值。可以是 Python 中的标量、列表、NumPy 数组或其他 TensorFlow 张量。
- `dtype`:可选参数,指定常量的数据类型。例如,`tf.float32` 表示浮点数类型,默认为 `tf.float32`。
- `shape`:可选参数,指定常量张量的形状。如果未指定,则根据 `value` 的形状自动确定。
- `name`:可选参数,为常量张量指定名称。
- `verify_shape`:可选参数,如果为 True,则会检查 `value` 是否具有与指定 `shape` 匹配的形状。默认为 False。

以下是一些示例:

import tensorflow as tf

# 创建一个标量常量
scalar_constant = tf.constant(5)

# 创建一个形状为 (2, 3) 的常量张量
matrix_constant = tf.constant([[1, 2, 3], [4, 5, 6]])

# 创建一个形状为 (3, 2) 的常量张量,并指定数据类型为 float32
float_matrix_constant = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=tf.float32)

`tf.constant` 用于创建不可变的张量,即创建后无法更改其值。如果你需要可变的张量,可以使用其他 TensorFlow 操作来实现,例如 `tf.Variable`。

二、高斯滤波

高斯滤波的卷积核具有以下特点:

1. **中心点权重最高**:高斯滤波核的中心点权重最高,而周围的权重逐渐减小。这是因为高斯分布在中心点处具有峰值,而在距离中心点越远的位置权重逐渐减小。

2. **对称性**:高斯滤波核通常是对称的,即以中心点为对称轴,左右或上下的权重是相等的。这确保了平滑操作是均匀的,不引入图像的偏移或拉伸。

3. **权重和为1**:高斯滤波核的所有权重之和始终为1。这确保了在滤波过程中图像的亮度不会发生明显的变化,因为它们都是加权平均值。

4. **标准差控制平滑程度**:高斯滤波核的平滑程度由标准差(σ,sigma)参数控制。较小的标准差会产生较低的平滑效果,而较大的标准差会产生更高的平滑效果。标准差越大,权重分布越广,导致更大程度的平滑。

5. **核的大小**:高斯滤波核的大小通常是一个奇数,例如3x3、5x5等。核的大小决定了平滑的程度,较大的核可以产生更强烈的平滑效果。

高斯滤波核的形状和权重分布使其能够有效地去除图像中的高频噪声,平滑图像,并保持图像的整体结构。这使得它成为图像处理和计算机视觉中常用的滤波方法之一,特别是在前处理步骤中用于减少噪声以提高后续处理步骤的性能。

# 高斯滤波
input_img = tf.constant(moon.reshape(1, 474, 630, 1), dtype=tf.float32)
filters = tf.constant(np.array([[1/9, 2/9, 1/9], [2/9, 3/9, 2/9], [1/9, 2/9, 1/9]]).reshape(3, 3, 1, 1), dtype=tf.float32)
strides = [1, 1, 1, 1]
conv2d = tf.nn.conv2d(input=input_img, filters=filters, strides=strides, padding='SAME')
plt.figure(figsize=(10, 8))
plt.imshow(conv2d.numpy().reshape(474, 630), cmap='gray')

三、边缘检测

np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]])   用于进行图像边缘检测

这个特定的卷积核可以用于检测图像中的边缘特征。它的作用如下:

  • 中心像素(-4)具有最高的负权重,表示它对于周围像素的差异非常敏感
  • 上、下、左、右的相邻像素(1)具有正权重,表示它们对于中心像素的影响。
  • 四个对角线的相邻像素(0)没有影响。
  • 通过在图像上滑动这个卷积核并执行卷积操作,可以突出图像中的边缘特征,因为边缘通常是像素值的剧烈变化。这种卷积核也可以用于图像锐化,以增强图像中的边缘特征。
cat = plt.imread('cat.jpg')
plt.figure(figsize=(10, 8))
plt.imshow(cat)

# 把猫变成黑白图片. 
cat = cat.mean(axis=2)
plt.figure(figsize=(10, 8))

#不加gray,图像将会被上色
plt.imshow(cat, cmap='gray')

 `cat.mean(axis=2)` 是一个NumPy数组操作,用于计算沿指定轴(axis)的平均值。让我们解释一下这个操作的含义:

假设 `cat` 是一个NumPy数组,它的形状为 `(height, width, channels)`,其中:
- `height` 表示图像的高度(垂直像素数)。
- `width` 表示图像的宽度(水平像素数)。
- `channels` 表示图像的通道数,通常是3(表示红、绿、蓝通道)。

`axis=2` 意味着你正在沿着第三个维度(即通道维度)计算平均值。在这个上下文中,`cat.mean(axis=2)` 将返回一个新的NumPy数组,该数组的形状为 `(height, width)`,其中每个元素代表了在相应位置的像素通道的平均值

这个操作通常用于将彩色图像转换为灰度图像,因为它会将每个像素点的颜色通道平均值作为该像素点的灰度值,从而将彩色图像转换为灰度图像。

#不加gray,图像将会被上色

# 边缘检测
input_img = tf.constant(cat.reshape(1, 456, 730, 1), dtype=tf.float32)
filters = tf.constant(np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]]).reshape(3, 3, 1, 1), dtype=tf.float32)
strides = [1, 1, 1, 1]
conv2d = tf.nn.conv2d(input=input_img, filters=filters, strides=strides, padding='SAME')
plt.figure(figsize=(10, 8))
plt.imshow(conv2d.numpy().reshape(456, 730), cmap='gray')
plt.show()

通常,神经网络中,卷积核数值是用 反向传播 计算得到

四、锐化

# 锐化
input_img = tf.constant(cat.reshape(1, 456, 730, 1), dtype=tf.float32)
filters = tf.constant(np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]]).reshape(3, 3, 1, 1), dtype=tf.float32)
strides = [1, 1, 1, 1]
conv2d = tf.nn.conv2d(input=input_img, filters=filters, strides=strides, padding='SAME')
plt.figure(figsize=(10, 8))
plt.imshow(conv2d.numpy().reshape(456, 730), cmap='gray')

五、对彩色图片的卷积

彩色图片有三个通道,把每个通道作为一张图

euro.reshape(1, 582, 1024, 3).transpose([3, 1, 2, 0]) //不改变图片的情况下,修改维度

euro = plt.imread('./欧式.jpg')
plt.figure(figsize=(10, 8))
plt.imshow(euro)
print(euro.shape) #形状

# 对彩色图片进行卷积操作.
# 把彩色图片的每个通道当成一张图
input_img = tf.constant(euro.reshape(1, 582, 1024, 3).transpose([3, 1, 2, 0])), dtype=tf.float32)
filters = tf.constant(np.array([[1/9, 1/9, 1/9], [1/9, 1/9, 1/9], [1/9, 1/9, 1/9]]).reshape(3, 3, 1, 1), dtype=tf.float32)
strides = [1, 1, 1, 1]
conv2d = tf.nn.conv2d(input=input_img, filters=filters, strides=strides, padding='SAME')
plt.figure(figsize=(10, 8))
plt.imshow(conv2d.numpy().reshape(3, 582, 1024).transpose([1, 2, 0]) / 255.0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/982834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

28.考试

Description 小学期马上就要结束了,为了检验大家的学习成果,老师进行了一次考试。然而小徐前两周半都忙于练习篮球,几乎没有学习,因此考试时很可能做不完所有题目。 但小徐仍然想要拿到尽可能高的分数,因此在做题时需要…

ODrive移植keil(二)—— ODrive的程序架构

目录 一、移植说明二、支持的驱动板三、程序架构说明3.1、从main开始3.2、TIM8更新中断3.3、AD转换的专题说明 ODrive、VESC和SimpleFOC 教程链接汇总:请点击 一、移植说明 上一节教程的移植主要体现在硬件上,软件改动很小并且仍然为VScode版本&#xff…

手写Spring:第16章-给代理对象的属性设置值

文章目录 一、目标:给代理对象的属性设置值二、设计:给代理对象的属性设置值三、实现:给代理对象的属性设置值3.1 工程结构3.2 在Bean生命周期中创建代理对象类图3.3 判断CGLIB对象3.4 迁移创建AOP代理方法3.4.1 实例化感知对象处理3.4.2 扫描…

自动化测试:selenium(完结篇)

一、元素操作方法 方法: 1、.send_keys() # 输入方法 2、.click() # 点击方法 3、.clear() # 清空方法注意:在输入方法之前一定要清空操作!! # 导包 from time import sleep from selenium import webdriver# 实例化浏览器 d…

教你如何在三秒内,将PPT转换成翻页的电子书

​大家好!今天教大家一个非常实用的技巧 瞬间将你的PPT变身为炫酷的翻页电子书,这个方法非常简单,只需要几个操作步骤就能完成,让我们一起来看看吧! 在转换之前肯定是需要一款工具的,可以试试FLBOOK在线制…

论文笔记:Reinforcing Local Structure Perception for Monocular Depth Estimation

提出问题 混合数据集中深度范围的变化会导致网络的不稳定。虽然已经引入了一些仿射不变的损失函数,但现有的方法可能会导致次优的几何结构,如模糊的边界和细节。 思路 我们提出了一种新的像素级监督损失,称为 the windowed correlation re…

两个有序链表序列的交集

已知两个非降序链表序列S1与S2,设计函数构造出S1与S2的交集新链表S3。 输入格式: 输入分两行,分别在每行给出由若干个正整数构成的非降序序列,用−1表示序列的结尾(−1不属于这个序列)。数字用空格间隔。 输出格式:…

气传导耳机排名前十名,推荐几款性能表现不错的气传导耳机

​蓝牙耳机大家都很熟悉,如果更了解一些的朋友,一定也知道气传导耳机。气传导耳机最大的好处在于不入耳佩戴更舒适,户外使用时还能听到周围环境音,不会屏蔽汽车鸣笛声,使用更加安全。但也还有很多小伙伴不知道气传导耳…

css flex:1;详解,配合demo效果解答

前言 给设置了display:flex的子组件设置了flex:1;就能让他填满整个容器,如果有多个就平均 flex:1;是另外三个样式属性的简写,等同 flex-grow: 0; flex-shrink: 1; flex-basis: auto;我们就针…

idea插件推荐——Bito提高编码效率

Bito是一款在IntelliJ IDEA编辑器中的插件,Bito插件是由ChatGPT团队开发的,它是ChatGPT团队为了提高开发效率而开发的一款工具。Bito插件的强大之处在于它可以帮助开发人员更快地提交代码,同时还提供了一些有用的功能,如自动补全提…

it设备综合监控系统

IT综合监控系统是一系列IT管理产品的总称,具有功能齐全、应用便捷、解决方案齐全的产品,可一站式服务满足消费者的各种IT管理需求。该产品涵盖网络管理、服务器管理、存储系统、安全管理等方面,可为企业提供对整个IT系统的全方位监控和管理。…

【UIPickerView案例06-省市选择界面数据展示02-省市显示到Label上 Objective-C语言】

一、接下来,我要把城市、省、显示到下面的Label上 1.但是呢,我们现在能拿到它的Label吗, 是不是也是一样的,拖线啊 切换到三视图、选择ViewController.m文件 在类扩展里面, 左边这个呢,按住Control键,拖进来, Name:provinceLbl, 右边这个呢,按住Control键,拖进来…

G1 收集器【JVM调优】

文章目录 1. 分区收集器2. G1 收集器 1. 分区收集器 ① G1:分区算法,物理上不分代,逻辑分代。每次只回收快满了的几个小区域,对于较大的 Eden 区,回收效率还不算很高; ② ZGC:分页算法&#xff…

JS 一维数组 和 二维数组之间的相互转换

JS 一维数组 和 二维数组之间的相互转换 二维数组转一维数组一、需求二、分析1. 方法一(ES5)2. 方法二(ES6)3. 方法三(ES6)3. 方法四(ES5)4. 特殊说明:flat()方法会移除数…

基于Java+SpringBoot+Vue前后端分离电商应用系统设计和实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…

streamlit执行报错WARNING,重新安装碰到问题如何解决

streamlit执行报错WARNING,重新安装碰到问题如何解决 如何解决1、卸载已经安装的程序2、再次安装程序3、出现如下yinstaller 警告问题:4、又出现“which is not on PATH”警告。5、解决方案 发现在安装的时候有很多WARNING出现,但是没有但回事…

C# OpenVino Yolov8 Detect 目标检测

效果 项目 代码 using OpenCvSharp; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using static System.Net.Mime.MediaT…

线性代数(六) 线性变换

前言 《线性空间》定义了空间,这章节来研究空间与空间的关联性 函数 函数是一个规则或映射,将一个集合中的每个元素(称为自变量)映射到另一个集合中的唯一元素(称为因变量)。 一般函数从 “A” 的每个元…

数字化时代,企业为什么要做数字化转型?

企业需要在数字时代进行数字化转型的原因是多方面的: 1.竞争优势:数字化转型使企业能够获得竞争优势。通过采用先进技术和数字化运营,他们可以提供创新的产品和服务,比竞争对手更快地满足客户不断变化的需求。 2.提高效率和降低…

删除单链表偶数节点

本题要求实现两个函数,分别将读入的数据存储为单链表、将链表中偶数值的结点删除。链表结点定义如下: struct ListNode { int data; struct ListNode *next; }; 函数接口定义: struct ListNode *createlist(); struct ListNode *deleteeven( …