JDK源码解析-ConcurrentHashMap

news2025/1/4 17:44:06

1. ConcurrentHashMap

思考:HashTable是线程安全的,为什么不推荐使用?

HashTable是一个线程安全的类,它使用synchronized来锁住整张Hash表来实现线程安全,即每次锁住整张表让线程独占,相当于所有线程进行读写时都去竞争一把锁,导致效率非常低下。

1.1 ConcurrentHashMap 1.7

在JDK1.7中ConcurrentHashMap采用了数组+分段锁的方式实现

Segment(分段锁)-减少锁的粒度

ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表,同时又是一个ReentrantLock(Segment继承了ReentrantLock)。

1.存储结构

Java 7 版本 ConcurrentHashMap 的存储结构如图:

'xxs'

'xxs'

ConcurrnetHashMap 由很多个 Segment 组合,而每一个 Segment 是一个类似于 HashMap 的结构,所以每一个 HashMap 的内部可以进行扩容。但是 Segment 的个数一旦初始化就不能改变,默认 Segment 的个数是 16 个,所以可以认为 ConcurrentHashMap 默认支持最多 16 个线程并发。

2. 初始化

通过 ConcurrentHashMap 的无参构造探寻 ConcurrentHashMap 的初始化流程。

/**
 * Creates a new, empty map with a default initial capacity (16),
 * load factor (0.75) and concurrencyLevel (16).
 */
public ConcurrentHashMap() {
    this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
}

无参构造中调用了有参构造,传入了三个参数的默认值,他们的值是。

/**
 * 默认初始化容量,这个容量指的是Segment 的大小
 */
static final int DEFAULT_INITIAL_CAPACITY = 16;

/**
 * 默认负载因子
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 * 默认并发级别,并发级别指的是Segment桶的个数,默认是16个并发大小
 */
static final int DEFAULT_CONCURRENCY_LEVEL = 16;

Segment下面entryset数组的大小是用DEFAULT_INITIAL_CAPACITY/DEFAULT_CONCURRENCY_LEVEL求出来的。

接着看下这个有参构造函数的内部实现逻辑。

@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {
    // 参数校验
    if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
    // 校验并发级别大小,大于 1<<16,重置为 65536
    if (concurrencyLevel > MAX_SEGMENTS)
        concurrencyLevel = MAX_SEGMENTS;
    // Find power-of-two sizes best matching arguments
    // 2的多少次方
    int sshift = 0;//控制segment数组的大小
    int ssize = 1;
    // 这个循环可以找到 concurrencyLevel 之上最近的 2的次方值
    while (ssize < concurrencyLevel) {
        ++sshift;//代表ssize左移的次数
        ssize <<= 1;
    }
    // 记录段偏移量
    this.segmentShift = 32 - sshift;
    // 记录段掩码
    this.segmentMask = ssize - 1;
    // 设置容量   判断初始容量是否超过允许的最大容量
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    // c = 容量 / ssize ,默认 16 / 16 = 1,这里是计算每个 Segment 中的类似于 HashMap 的容量
   //求entrySet数组的大小,这个地方需要保证entrySet数组的大小至少可以存储下initialCapacity的容量,假设initialCapacity为33,ssize为16,那么c=2,所以if语句是true,那么c=3,MIN_SEGMENT_TABLE_CAPACITY初始值是2,所以if语句成立,那么cap=4,所以每一个segment的容量初始为4,segment为16,16*4>33成立,entrySet数组的大小也需要是2的幂次方
    int c = initialCapacity / ssize;
    if (c * ssize < initialCapacity)
        ++c;
    int cap = MIN_SEGMENT_TABLE_CAPACITY;
    //Segment 中的类似于 HashMap 的容量至少是2或者2的倍数
    while (cap < c)
        cap <<= 1;
    // create segments and segments[0]
    // 创建 Segment 数组,设置 segments[0]
    Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                         (HashEntry<K,V>[])new HashEntry[cap]);
    Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
    UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    this.segments = ss;
}

总结一下在 Java 7 中 ConcurrnetHashMap 的初始化逻辑。

  1. 必要参数校验。
  2. 校验并发级别 concurrencyLevel 大小,如果大于最大值,重置为最大值。无参构造默认值是 16.
  3. 寻找并发级别 concurrencyLevel 之上最近的 2 的幂次方值,作为初始化容量大小,默认是 16
  4. 记录 segmentShift 偏移量,这个值为【容量 = 2 的N次方】中的 N,在后面 Put 时计算位置时会用到。默认是 32 - sshift = 28.
  5. 记录 segmentMask,默认是 ssize - 1 = 16 -1 = 15.
  6. 初始化 segments[0]默认大小为 2负载因子 0.75扩容阀值是 2*0.75=1.5,插入第二个值时才会进行扩容。
  1. 计算segment数组容量的大小。
  2. 计算entrySet数组的大小。
  3. 初始化segment数组,其中生成一个s0对象放在数组的第0个位置
  4. 为什么首先需要一个s0存储到数组的第一个位置?

因为初始化数组完成后数组元素都还是null值,以后每一次添加一个元素的话,需要封装为entrySet对象,还需要对entrySet数组的大小重新计算,如果把第一次的计算结果全部存储到S0中,那么以后的话只需要直接拿来使用即可,不需要重新计算。虽然Segment对象不同,但是对象中属性内容其实是一样的。

  1. Segment数组的长度第一次已经确定,以后不会在改变,扩容是局部扩容,只对setrySet数组的容量进行扩容。

3. put

接着上面的初始化参数继续查看 put 方法源码。

/**
 * Maps the specified key to the specified value in this table.
 * Neither the key nor the value can be null.
 *
 * <p> The value can be retrieved by calling the <tt>get</tt> method
 * with a key that is equal to the original key.
 *
 * @param key key with which the specified value is to be associated
 * @param value value to be associated with the specified key
 * @return the previous value associated with <tt>key</tt>, or
 *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 * @throws NullPointerException if the specified key or value is null
 */
public V put(K key, V value) {
    Segment<K,V> s;
    if (value == null)
        throw new NullPointerException();
    int hash = hash(key);
    // hash 值无符号右移 28位(初始化时获得),然后与 segmentMask=15 做与运算
    // 其实也就是把高4位与segmentMask(1111)做与运算

  // this.segmentMask = ssize - 1;
   //对hash值进行右移segmentShift位,计算元素对应segment中数组下表的位置
   //把hash右移segmentShift,相当于只要hash值的高32-segmentShift位,右移的目的是保留了hash值的高位。然后和segmentMask与操作计算元素在segment数组中的下表
    int j = (hash >>> segmentShift) & segmentMask;
   //使用unsafe对象获取数组中第j个位置的值,后面加上的是偏移量
    if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
         (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
        // 如果查找到的 Segment 为空,初始化
        s = ensureSegment(j);
   //插入segment对象
    return s.put(key, hash, value, false);
}

/**
 * Returns the segment for the given index, creating it and
 * recording in segment table (via CAS) if not already present.
 *
 * @param k the index
 * @return the segment
 */
@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
    final Segment<K,V>[] ss = this.segments;
    long u = (k << SSHIFT) + SBASE; // raw offset
    Segment<K,V> seg;
    // 判断 u 位置的 Segment 是否为null
    if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
        Segment<K,V> proto = ss[0]; // use segment 0 as prototype
        // 获取0号 segment 里的 HashEntry<K,V> 初始化长度
        int cap = proto.table.length;
        // 获取0号 segment 里的 hash 表里的扩容负载因子,所有的 segment 的 loadFactor 是相同的
        float lf = proto.loadFactor;
        // 计算扩容阀值
        int threshold = (int)(cap * lf);
        // 创建一个 cap 容量的 HashEntry 数组
        HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck
            // 再次检查 u 位置的 Segment 是否为null,因为这时可能有其他线程进行了操作
            Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);
            // 自旋检查 u 位置的 Segment 是否为null
            while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                   == null) {
                // 使用CAS 赋值,只会成功一次
                if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
                    break;
            }
        }
    }
    return seg;
}

上面的源码分析了 ConcurrentHashMap 在 put 一个数据时的处理流程,下面梳理下具体流程。

  1. 计算要 put 的 key 的位置,获取指定位置的 Segment。

  2. 如果指定位置的 Segment 为空,则初始化这个 Segment.

    初始化 Segment 流程:

    1. 检查计算得到的位置的 Segment 是否为null.
    2. 为 null 继续初始化,使用 Segment[0] 的容量和负载因子创建一个 HashEntry 数组。
    3. 再次检查计算得到的指定位置的 Segment 是否为null.
    4. 使用创建的 HashEntry 数组初始化这个 Segment.
    5. 自旋判断计算得到的指定位置的 Segment 是否为null,使用 CAS 在这个位置赋值为 Segment.
  3. Segment.put 插入 key,value 值。

上面探究了获取 Segment 段和初始化 Segment 段的操作。最后一行的 Segment 的 put 方法还没有查看,继续分析。

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    // 获取 ReentrantLock 独占锁,获取不到,scanAndLockForPut 获取。
    HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value);
    V oldValue;
    try {
        HashEntry<K,V>[] tab = table;
        // 计算要put的数据位置
        int index = (tab.length - 1) & hash;
        // CAS 获取 index 坐标的值
        HashEntry<K,V> first = entryAt(tab, index);
        for (HashEntry<K,V> e = first;;) {
            if (e != null) {
                // 检查是否 key 已经存在,如果存在,则遍历链表寻找位置,找到后替换 value
                K k;
                if ((k = e.key) == key ||
                    (e.hash == hash && key.equals(k))) {
                    oldValue = e.value;
                    if (!onlyIfAbsent) {
                        e.value = value;
                        ++modCount;
                    }
                    break;
                }
                e = e.next;
            }
            else {
                // first 有值没说明 index 位置已经有值了,有冲突,链表头插法。
                if (node != null)
                    node.setNext(first);
                else
                    node = new HashEntry<K,V>(hash, key, value, first);
                int c = count + 1;
                // 容量大于扩容阀值,小于最大容量,进行扩容
                if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    rehash(node);
                else
                    // index 位置赋值 node,node 可能是一个元素,也可能是一个链表的表头
                    setEntryAt(tab, index, node);
                ++modCount;
                count = c;
                oldValue = null;
                break;
            }
        }
    } finally {
        unlock();
    }
    return oldValue;
}

由于 Segment 继承了 ReentrantLock,所以 Segment 内部可以很方便的获取锁,put 流程就用到了这个功能。

  1. tryLock() 获取锁,获取不到使用 scanAndLockForPut 方法继续获取。

  2. 计算 put 的数据要放入的 index 位置,然后获取这个位置上的 HashEntry 。

  3. 遍历 put 新元素,为什么要遍历?因为这里获取的 HashEntry 可能是一个空元素,也可能是链表已存在,所以要区别对待。

    如果这个位置上的 HashEntry 不存在

    1. 如果当前容量大于扩容阀值,小于最大容量,进行扩容
    2. 直接头插法插入。

    如果这个位置上的 HashEntry 存在

    1. 判断链表当前元素 Key 和 hash 值是否和要 put 的 key 和 hash 值一致。一致则替换值

    2. 不一致,获取链表下一个节点,直到发现相同进行值替换,或者链表表里完毕没有相同的。

      1. 如果当前容量大于扩容阀值,小于最大容量,进行扩容
      2. 直接链表头插法插入。
  4. 如果要插入的位置之前已经存在,替换后返回旧值,否则返回 null.

这里面的第一步中的 scanAndLockForPut 操作这里没有介绍,这个方法做的操作就是不断的自旋 tryLock() 获取锁。当自旋次数大于指定次数时,使用 lock() 阻塞获取锁。在自旋时顺表获取下 hash 位置的 HashEntry。

private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
    HashEntry<K,V> first = entryForHash(this, hash);
    HashEntry<K,V> e = first;
    HashEntry<K,V> node = null;
    int retries = -1; // negative while locating node
    // 自旋获取锁
    while (!tryLock()) {
        HashEntry<K,V> f; // to recheck first below
        if (retries < 0) {
            if (e == null) {
                if (node == null) // speculatively create node
                    node = new HashEntry<K,V>(hash, key, value, null);
                retries = 0;
            }
            else if (key.equals(e.key))
                retries = 0;
            else
                e = e.next;
        }
        else if (++retries > MAX_SCAN_RETRIES) {
            // 自旋达到指定次数后,阻塞等到只到获取到锁
            lock();
            break;
        }
        else if ((retries & 1) == 0 &&
                 (f = entryForHash(this, hash)) != first) {
            e = first = f; // re-traverse if entry changed
            retries = -1;
        }
    }
    return node;
}

4. 扩容 rehash

ConcurrentHashMap 的扩容只会扩容到原来的两倍。老数组里的数据移动到新的数组时,位置要么不变,要么变为 index+ oldSize,参数里的 node 会在扩容之后使用链表头插法插入到指定位置。

private void rehash(HashEntry<K,V> node) {
    HashEntry<K,V>[] oldTable = table;
    // 老容量
    int oldCapacity = oldTable.length;
    // 新容量,扩大两倍
    int newCapacity = oldCapacity << 1;
    // 新的扩容阀值 
    threshold = (int)(newCapacity * loadFactor);
    // 创建新的数组
    HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity];
    // 新的掩码,默认2扩容后是4,-1是3,二进制就是11。
    int sizeMask = newCapacity - 1;
    for (int i = 0; i < oldCapacity ; i++) {
        // 遍历老数组
        HashEntry<K,V> e = oldTable[i];
        if (e != null) {
            HashEntry<K,V> next = e.next;
            // 计算新的位置,新的位置只可能是不便或者是老的位置+老的容量。
            int idx = e.hash & sizeMask;
            if (next == null)   //  Single node on list
                // 如果当前位置还不是链表,只是一个元素,直接赋值
                newTable[idx] = e;
            else { // Reuse consecutive sequence at same slot
                // 如果是链表了
                HashEntry<K,V> lastRun = e;
                int lastIdx = idx;
                // 新的位置只可能是不便或者是老的位置+老的容量。
                // 遍历结束后,lastRun 后面的元素位置都是相同的
                for (HashEntry<K,V> last = next; last != null; last = last.next) {
                    int k = last.hash & sizeMask;
                    if (k != lastIdx) {
                        lastIdx = k;
                        lastRun = last;
                    }
                }
                // ,lastRun 后面的元素位置都是相同的,直接作为链表赋值到新位置。
                newTable[lastIdx] = lastRun;
                // Clone remaining nodes
                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                    // 遍历剩余元素,头插法到指定 k 位置。
                    V v = p.value;
                    int h = p.hash;
                    int k = h & sizeMask;
                    HashEntry<K,V> n = newTable[k];
                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                }
            }
        }
    }
    // 头插法插入新的节点
    int nodeIndex = node.hash & sizeMask; // add the new node
    node.setNext(newTable[nodeIndex]);
    newTable[nodeIndex] = node;
    table = newTable;
}

有些同学可能会对最后的两个 for 循环有疑惑,这里第一个 for 是为了寻找这样一个节点,这个节点后面的所有 next 节点的新位置都是相同的。然后把这个作为一个链表赋值到新位置。第二个 for 循环是为了把剩余的元素通过头插法插入到指定位置链表。这样实现的原因可能是基于概率统计,有深入研究的同学可以发表下意见。

5. get

到这里就很简单了,get 方法只需要两步即可。

  1. 计算得到 key 的存放位置。
  2. 遍历指定位置查找相同 key 的 value 值。
public V get(Object key) {
    Segment<K,V> s; // manually integrate access methods to reduce overhead
    HashEntry<K,V>[] tab;
    int h = hash(key);
    long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
    // 计算得到 key 的存放位置
    if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
        (tab = s.table) != null) {
        for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                 (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
             e != null; e = e.next) {
            // 如果是链表,遍历查找到相同 key 的 value。
            K k;
            if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                return e.value;
        }
    }
    return null;
}

1.2 ConcurrentHashMap 1.8

1. 存储结构

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KBAuW2hq-1692954211600)(https://img-testing.mshp360.com/images/777aa77f4b9dda09bbd40454d77fb54c.png)]

可以发现 Java8 的 ConcurrentHashMap 相对于 Java7 来说变化比较大,不再是之前的 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。当冲突链表达到一定长度时,链表会转换成红黑树。

补充:CAS

CAS(Compare-and-Swap/Exchange),即比较并替换,是一种实现并发常用到的技术。

CAS核心算法:执行函数:CAS(V,E,N)

V表示准备要被更新的变量 (内存的值)      
E表示我们提供的 期望的值 (期望的原值)
N表示新值 ,准备更新V的值 (新值)

算法思路:V是共享变量,我们拿着自己准备的这个E,去跟V去比较,如果E == V ,说明当前没有其它线程在操作,所以,我们把N 这个值 写入对象的 V 变量中。如果 E != V ,说明我们准备的这个E,已经过时了,所以我们要重新准备一个最新的E ,去跟V 比较,比较成功后才能更新 V的值为N。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9B9gNgr2-1692954211600)(https://img-testing.mshp360.com/images/image-20220319000316710.png)]

如果多个线程同时使用CAS操作一个变量的时候,只有一个线程能够修改成功。其余的线程提供的期望值已经与共享变量的值不一样了,所以均会失败。

由于CAS操作属于乐观派,它总是认为自己能够操作成功,所以操作失败的线程将会再次发起操作,而不是被OS挂起。所以说,即使CAS操作没有使用同步锁,其它线程也能够知道对共享变量的影响。

因为其它线程没有被挂起,并且将会再次发起修改尝试,所以无锁操作即CAS操作天生免疫死锁。

另外一点需要知道的是,CAS是系统原语,CAS操作是一条CPU的原子指令,所以不会有线程安全问题。

ABA问题:E和E2对比相同是不能保证百分百保证,其他线程没有在自己线程执行计算的过程里抢锁成功过。有可能其他线程操作后新E值和旧E值一样!

ABA问题解决:在E对象里加个操作次数变量就行,每次判断时对比两个,E和操作次数就OK了,因为ABA问题中就算E相同操作次数也绝不相同

2. 初始化 initTable

/**
 * Initializes table, using the size recorded in sizeCtl.
 */
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        //如果 sizeCtl < 0 ,说明另外的线程执行CAS 成功,正在进行初始化。
        if ((sc = sizeCtl) < 0)
            // 让出 CPU 使用权
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

从源码中可以发现 ConcurrentHashMap 的初始化是通过自旋和 CAS 操作完成的。里面需要注意的是变量 sizeCtl ,它的值决定着当前的初始化状态。

  1. -1 说明正在初始化
  2. -N 说明有N-1个线程正在进行扩容
  3. 表示 table 初始化大小,如果 table 没有初始化
  4. 表示 table 容量,如果 table 已经初始化。

3. put

直接过一遍 put 源码。

public V put(K key, V value) {
    return putVal(key, value, false);
}

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    // key 和 value 不能为空
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        // f = 目标位置元素
        Node<K,V> f; int n, i, fh;// fh 后面存放目标位置的元素 hash 值
        if (tab == null || (n = tab.length) == 0)
            // 数组桶为空,初始化数组桶(自旋+CAS)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            // 桶内为空,CAS 放入,不加锁,成功了就直接 break 跳出
            if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))
                break;  // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 使用 synchronized 加锁加入节点
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    // 说明是链表
                    if (fh >= 0) {
                        binCount = 1;
                        // 循环加入新的或者覆盖节点
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    else if (f instanceof TreeBin) {
                        // 红黑树
                        Node<K,V> p;
                        binCount = 2;
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}
  1. 根据 key 计算出 hashcode 。
  2. 判断是否需要进行初始化。
  3. 即为当前 key 定位出的 Node,如果为空表示当前位置可以写入数据,利用 CAS 尝试写入,失败则自旋保证成功。
  4. 如果当前位置的 hashcode == MOVED == -1,则需要进行扩容。
  5. 如果都不满足,则利用 synchronized 锁写入数据。
  6. 如果数量大于 TREEIFY_THRESHOLD 则要转换为红黑树。

4. get

get 流程比较简单,直接过一遍源码。

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    // key 所在的 hash 位置
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        // 如果指定位置元素存在,头结点hash值相同
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                // key hash 值相等,key值相同,直接返回元素 value
                return e.val;
        }
        else if (eh < 0)
            // 头结点hash值小于0,说明正在扩容或者是红黑树,find查找
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {
            // 是链表,遍历查找
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

总结一下 get 过程:

  1. 根据 hash 值计算位置。
  2. 查找到指定位置,如果头节点就是要找的,直接返回它的 value.
  3. 如果头节点 hash 值小于 0 ,说明正在扩容或者是红黑树,查找之。
  4. 如果是链表,遍历查找之。

1.3 总结

Java7 中 ConcurrentHashMap 使用的分段锁,也就是每一个 Segment 上同时只有一个线程可以操作,每一个 Segment 都是一个类似 HashMap 数组的结构,它可以扩容,它的冲突会转化为链表。但是 Segment 的个数一但初始化就不能改变。

Java8 中的 ConcurrentHashMap 使用的 Synchronized 锁加 CAS 的机制。结构也由 Java7 中的 Segment 数组 + HashEntry 数组 + 链表 进化成了 Node 数组 + 链表 / 红黑树,Node 是类似于一个 HashEntry 的结构。它的冲突再达到一定大小时会转化成红黑树,在冲突小于一定数量时又退回链表。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/982109.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

封装一个贡献度面板组件

说在前面 贡献度面板&#xff08;Contribution Graph&#xff09;是指在代码仓库中按时间展示每位开发者的提交情况的可视化图表。它会显示不同日期的提交次数&#xff0c;并用颜色的深浅表示提交的数量。 贡献度面板展现的好处有以下几点&#xff1a; 可视化展示&#xff1…

Linux常用命令——cpio命令

在线Linux命令查询工具 cpio 用来建立、还原备份档的工具程序 补充说明 cpio命令主要是用来建立或者还原备份档的工具程序&#xff0c;cpio命令可以复制文件到归档包中&#xff0c;或者从归档包中复制文件。 语法 cpio(选项)选项 -0或--null&#xff1a;接受新增列控制字…

Windows11 设置移动热点 共享WIFI无线上网

Windows11 设置移动热点 共享WIFI无线上网 打开设置 键盘同时按下 windows i 在设置中点击 网络和 internet 移动热点 编辑移动热点参数 移动热点无接入上网设备 移动热点接入上网设备

Leetcode.174 地下城游戏

题目链接 Leetcode.174 地下城游戏 hard 题目描述 恶魔们抓住了公主并将她关在了地下城 d u n g e o n dungeon dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里&#xff0c;他必须穿过地下城并通过对抗恶魔来拯救公…

【消息中间件】详解三大MQ:RabbitMQ、RocketMQ、Kafka

作者简介 前言 博主之前写过一个完整的MQ系列&#xff0c;包含RabbitMQ、RocketMQ、Kafka&#xff0c;从安装使用到底层机制、原理。专栏地址&#xff1a; https://blog.csdn.net/joker_zjn/category_12142400.html?spm1001.2014.3001.5482 本文是该系列的清单综述&#xf…

ChatGPT集锦

目录 1. 一条指令让ChatGPT变的更强大2. 对ChatGPT提问时,常见的10种错误描述3. Custom instructions如何设置1. 一条指令让ChatGPT变的更强大 在使用GPT的过程中,如何让AI更清晰地了解你的需求很重要?今天分享一个指令,可以让GPT成为你的好同事,与你一起分析和解决问题,…

MySQL数据库进阶实战:优化性能、提高安全性和实现高可用性

&#x1f482; 个人网站:【工具大全】【游戏大全】【神级源码资源网】&#x1f91f; 前端学习课程&#xff1a;&#x1f449;【28个案例趣学前端】【400个JS面试题】&#x1f485; 寻找学习交流、摸鱼划水的小伙伴&#xff0c;请点击【摸鱼学习交流群】 当涉及到MySQL数据库的进…

【2023年11月第四版教材】第10章《进度管理》(合集篇)

第10章《进度管理》&#xff08;合集篇&#xff09; 1 章节说明2 管理基础3 管理过程3.1 管理的过程★★★3.2 管理ITTO汇总★★★ 4 规划进度管理4.1 进度管理计划★★★5 定义活动5.1 滚动式规划★★★5.2 里程碑清单★★★ 6 排列活动顺序6.1 紧前关系绘图法★★★6.2 箭线图…

SpringMVC(一)

1.SpringMVC简介 1.1 什么是MVC MVC是一种软件架构的思想&#xff0c;将软件按照模型、视图、控制器来划分 M:Model,模型层&#xff0c;指工程中的JavaBean,作用是处理数据 JavaBean分为两类&#xff1a; 一类称为实体类Bean:专门存储业务逻辑的&#xff0c;如Student、Us…

mybatisplus多租户原理略解

概述 当前mybatisPlus版本 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.5.3.2</version> </dependency>jdk版本&#xff1a;17 springboot版本&#xff1a;…

高速路自动驾驶功能HWP功能定义

一、功能定义 高速路自动驾驶功能HWP是指在一般畅通高速公路或城市快速路上驾驶员可以放开双手双脚&#xff0c;同时注意力可在较长时间内从驾驶环境中转移&#xff0c;做一些诸如看手机、接电话、看风景等活动&#xff0c;该系统最低工作速度为60kph。 如上两种不同环境和速度…

判断数据类型是否为时间区间pd.api.types.is_period_dtype()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 判断数据类型 是否为时间区间 pd.api.types.is_period_dtype() 选择题 下列说法错误的是? import pandas as pd a pd.Series(pd.period_range(2023-01-01, periods3)) print(【显示】a) p…

【Two Stream network (Tsn)】(二) 阅读笔记

贡献 将深度神经网络应用于视频动作识别的难点&#xff0c;是如何同时利用好静止图像上的 appearance information以及物体之间的运动信息motion information。本文主要有三点贡献&#xff1a; 1.提出了一种融合时间流和空间流的双流网络&#xff1b; 2.证明了直接在光流上训…

IDEA运行Java代码报错Command line is too long

Error running xxx: Command line is too long. Shorten command line for xxx or also for Application default configuration.解决方案一 在项目下的.idea/workspace.xml 中 <component name“PropertiesComponent”> 标签下加入 <property name“dynamic.classpa…

学习笔记——Java入门第二季

1.1 介绍类与对象 类和对象的关系&#xff1a; 时间万物皆对象。对象是具体的事物&#xff0c;是类的具体事例 类是抽象的概念&#xff0c;是对象的模板。 new关键字是创建实例对象最重要的标志 Dog duoduonew Dog(); Dog luckynew Dog(); 这样就创建了两个对象并且在java内…

软件系统功能测试的依据

验收测试 一、软件系统功能测试的依据&#xff1a; 采用GB/T 25000.51-2016系统与软件工程系统与软件质量要求和评价(SQuaRE)第51部分&#xff1a;就绪可用软件产品(RUSP)作为测试依据 二、常用功能测试方法&#xff1a; 界面测试 是指对使用界面的软件进行的软件测试&…

Docker 搭建Redis 集群之路

前言 搞技术就是动手&#xff0c;动手再动手&#xff0c;实践出真知&#xff0c;毕竟最终是要解决问题的呢&#xff0c;废话不多讲&#xff0c;开搞&#xff0c;主要是为了记录一下&#xff0c;毕竟过程还是有点艰辛呢需求&#xff08;target&#xff09; Windows 电脑 装一个…

网络层重点协议-IP协议(结构分析)

IP协议数据报格式 一.4位版本号 用来表示IP协议的版本&#xff0c;现有的IP协议只有两个版本IPv4和IPv6 二.4位首部长度 IP协议数据报报头的长度 三.8位服务类型 3位优先权字段&#xff08;已经弃用&#xff09;&#xff0c;4位TOS字段&#xff0c;和1位保留 字段&#xff08;必…

分享 8 个 VSCode 插件,提升你的编码体验

大多数开发者都在不断寻找让开发工作更轻松的方法&#xff0c;我也是如此。合适的工具可以帮助你实现这一目标。 在本文中&#xff0c;我们将探讨我个人使用的八个扩展&#xff0c;以优化我的编码体验。让我们来看看这些扩展的列表&#xff0c;亲自体验它们如何改善你的编码体验…

月报总结|Moonbeam 8月份大事一览

夏日已经趋近尾声&#xff0c;脚下的这片土地正迎来凉爽的秋天。Moonbeam在最炎热的8月中&#xff0c;依然朝着其愿景不断向前迈进。Moonbeam生态也迎来了许多好消息&#xff0c;先前启动的第二批生态Grant计划也完成了最后的链上投票&#xff0c;3个项目成功通过投票&#xff…