《TCP/IP网络编程》阅读笔记--基于UDP的服务器端/客户端

news2025/1/15 16:41:49

目录

1--TCP和UDP的主要区别

2--基于 UDP 的数据 I/O 函数

3--基于 UDP 的回声服务器端/客户端

4--UDP客户端Socket的地址分配

5--UDP存在数据边界

6--UDP已连接与未连接的设置


1--TCP和UDP的主要区别

① TCP 提供的是可靠数据传输服务,而 UDP 提供的是不可靠数据传输服务;

② UDP 在结构上比 TCP 更简洁,其不会发送 ACK 应答消息,也不会给数据包分配类似 SEQ 的序号;

③ 流控制是区分 UDP 和 TCP 的最重要标志,UDP 比 TCP 速度更快;

④ TCP 比 UCP 慢的主要两个原因:一是 TCP 在收发数据前后需要进行连接设置和清除过程;二是 TCP 在收发数据过程中为保证可靠性而添加的流控制;

⑤ TCP Socket 是一对一的关系,因此当需要为多个客户端提供服务时,就需要创建多个 TCP Socket,而 UDP 无论在服务器端还是客户端都只需要 1 个 Socket;

2--基于 UDP 的数据 I/O 函数

#include <sys/socket.h>
ssize_t sendto(int sock, void *buff, size_t nbytes, int flags, struct sockaddr *to, socklen_t addrlen); 
// 成功时返回传输的字节数,失败时返回 -1
// sock 表示传输数据的 UDP Socket 的文件描述符
// buff 表示保存待传输数据的缓冲地址值
// nbytes 表示待传输的数据长度,以字节为长度
// flags 可选项参数,若没有则传递 0
// to 存有目标地址信息的 sockaddr 结构体变量的地址值
// addrlen 传递给参数 to 的地址值结构体变量长度
#include <sys/socket.h>
ssize_t recvfrom(int sock, void *buff, size_t nbytes, int flags, struct sockaddr* from, socklen_t *addrlen);

// 成功时返回接收的字节数,失败时返回 -1
// sock 表示用于接收数据的 UDP socket的文件描述符
// nbytes 保存接收数据的缓冲地址值
// flags 可选项参数,若没有则传入 0
// from 存有发送端地址信息的 sockaddr 结构体变量的地址值
// addrlen 保存参数 from 的结构体变量长度的变量地址值

3--基于 UDP 的回声服务器端/客户端

服务器端:

// gcc uecho_server.c -o uecho_server
// ./uecho_server 9190

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30

void error_handling(char *message){
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

int main(int argc, char *argv[]){
    int serv_sock;
    char message[BUF_SIZE];
    int str_len;
    socklen_t clnt_adr_sz;
    struct sockaddr_in serv_adr, clnt_adr;

    if(argc != 2){
        printf("Usage : %s <port>\n", argv[0]);
        exit(1);
    }

    serv_sock = socket(PF_INET, SOCK_DGRAM, 0);
    if(serv_sock == -1){
        error_handling("UDP socket creation error");
    }

    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = htonl(INADDR_ANY);
    serv_adr.sin_port = htons(atoi(argv[1]));

    if(bind(serv_sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr)) == -1){
        error_handling("bind() error");
    }

    while(1){
        clnt_adr_sz = sizeof(clnt_adr);
        str_len = recvfrom(serv_sock, message, BUF_SIZE, 0, (struct sockaddr*)&clnt_adr, &clnt_adr_sz);
        sendto(serv_sock, message, str_len, 0, (struct sockaddr*)&clnt_adr, clnt_adr_sz);
    }
    close(serv_sock);
    return 0;
}

客户端:

// gcc uecho_client.c -o uecho_client
// ./uecho_client 127.0.0.1 9190

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30

void error_handling(char *message){
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

int main(int argc, char *argv[]){
    int sock;
    char message[BUF_SIZE];
    int str_len;
    socklen_t adr_sz;
    struct sockaddr_in serv_adr, from_adr;

    if(argc != 3){
        printf("Usage : %s <IP> <port>\n", argv[0]);
        exit(1);
    }

    sock = socket(PF_INET, SOCK_DGRAM, 0);
    if(sock == -1){
        error_handling("socket() error");
    }

    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = inet_addr(argv[1]);
    serv_adr.sin_port = htons(atoi(argv[2]));

    while(1){
        fputs("Insert message(q to quit): ", stdout);
        fgets(message, sizeof(message), stdin);

        if(!strcmp(message, "q\n") || !strcmp(message, "Q\n")){
            break;
        }

        sendto(sock, message, strlen(message), 0, (struct sockaddr*)&serv_adr, sizeof(serv_adr));
        adr_sz = sizeof(from_adr);
        str_len = recvfrom(sock, message, BUF_SIZE, 0, (struct sockaddr*)&from_adr, &adr_sz);
        message[str_len] = 0;
        printf("Message from server: %s", message);
    }
    close(sock);
    return 0;
}

运行结果:

4--UDP客户端Socket的地址分配

        TCP 客户端调用 connect() 函数自动完成 IP 和端口的分配;

        UDP 客户端调用 sento() 函数自动完成 IP 和端口的分配;

5--UDP存在数据边界

        TCP 数据传输不存在数据边界,而 UDP 数据传输存在数据边界,因此输入函数(recvfrom)和输出函数(sendto)的调用次数应该相同;

6--UDP已连接与未连接的设置

        UDP Socket 默认是未连接状态,因此每次传输数据都需要带上目标地址(IP、Port),这种属于未连接 Socket;

        类似于 TCP Socket,UDP同样可以调用 connect() 函数来设置目标地址,从而创建已连接的 UDP Socket;

        已连接的 UDP Socket 由于指定了收发对象,因此不仅可以使用 sendto、recvfrom 函数,还可以使用 write 和 read 函数进行通信;

        基于已连接 UDP 的回声客户端如下:

// gcc uecho_con_client.c -o uecho_con_client
// ./uecho_con_client 127.0.0.1 9190

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30

void error_handling(char *message){
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

int main(int argc, char *argv[]){
    int sock;
    char message[BUF_SIZE];
    int str_len;
    socklen_t adr_sz;
    struct sockaddr_in serv_adr, from_adr;

    if(argc != 3){
        printf("Usage : %s <IP> <port>\n", argv[0]);
        exit(1);
    }

    sock = socket(PF_INET, SOCK_DGRAM, 0);
    if(sock == -1){
        error_handling("socket() error");
    }

    memset(&serv_adr, 0, sizeof(serv_adr));
    serv_adr.sin_family = AF_INET;
    serv_adr.sin_addr.s_addr = inet_addr(argv[1]);
    serv_adr.sin_port = htons(atoi(argv[2]));

    connect(sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr));

    while(1){
        fputs("Insert message(q to quit): ", stdout);
        fgets(message, sizeof(message), stdin);

        if(!strcmp(message, "q\n") || !strcmp(message, "Q\n")){
            break;
        }

        write(sock, message, strlen(message));
        str_len = read(sock, message, sizeof(message) - 1);
        message[str_len] = 0;
        printf("Message from server: %s", message);
    }
    close(sock);
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/980884.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用Java分析器优化代码性能,解决OOM问题

有的时候博客内容会有变动&#xff0c;首发博客是最新的&#xff0c;其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址 背景 最近我一直在做性能优化&#xff0c;对一个单机应用做性能优化。主要是涉及到解析和导入导出相关的业务。 大致说一下这个单机应用…

算法 数据结构 递归插入排序 java插入排序 递归求解插入排序算法 如何用递归写插入排序 插入排序动图 插入排序优化 数据结构(十)

1. 插入排序&#xff08;insertion-sort&#xff09;&#xff1a; 是一种简单直观的排序算法。它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入 算法稳定性: 对于两个相同的数&#xff0c;经过…

Matlab进阶绘图第28期—带回归趋势线的密度散点图

在之前的文章中&#xff0c;分享了Matlab密度散点图的绘制方法&#xff1a; 进一步&#xff0c;假如我们需要计算、添加散点的拟合线&#xff0c;该怎么操作呢&#xff1f; 本期就来分享一下带回归趋势线的密度散点图的绘制方法&#xff0c;先来看一下成品效果&#xff1a; 特…

iOS开发Swift-10-位置授权, cocoapods,API,天气获取,城市获取-和风天气App首页代码

1.获取用户当前所在的位置 在infi中点击加号,选择权限:当用户使用app的时候获取位置权限. 填写使用位置权限的目的. 2.获取用户的经纬度. ViewController: import UIKit import CoreLocationclass ViewController: UIViewController, CLLocationManagerDelegate { //遵循CLL…

C#进阶 多个泛型约束

using System; using System.Collections; using System.Collections.Generic; using System.Linq; using UnityEngine;public class A02_Generic : MonoBehaviour {[ContextMenu("测试Start")]// Start is called before the first frame updatevoid Start(){Person…

Java SPI的原理和实践

Java SPI的概念和术语 SPI&#xff1a;全称是Service Provider Interface它是从Java 6开始引入的&#xff0c;是一种基于ClassLoader来发现并加载服务的机制。一个标准的SPI&#xff0c;由3个组件构成&#xff0c;分别是&#xff1a; Service - 服务接口&#xff1a;是一个公…

简单理解微服务限流、降级、熔断

微服务限流、降级、熔断分别都是什么意思&#xff0c;我们平时工作中为什么要关注这些东西呢&#xff1f; 公司不断的发展壮大&#xff0c;一开始处于蛮荒时代&#xff0c;咱们从单体应用过渡到微服务的时候&#xff0c;可能还是那一套单体的思想&#xff0c;再加上用户量可能…

VIT理论代码详解

将图像输入到transformer的思想 把每个像素点按照顺序拿出来&#xff0c;作为token&#xff0c;这样做的话输入参数规模是&#xff1a;假如是1通道的灰度图&#xff1a; 224x224x150176&#xff0c;bert才512&#xff0c;是bert的100倍。 改进方法&#xff1a; VIT模型架构图…

前端代理报错Error occured while trying to proxy to: localhost:端口

webpack配置进行前端代理时&#xff0c; 报错信息如下&#xff1a;(DEPTH_ZERO_SELF_SIGNED_CERT) 需设置&#xff1a;secure为false即可解决此报错 // webpack配置前端代理config["/test"]{target: https://xxxx.com,changeOrigin: true,secure: false // 这个配置…

设计模式(1) - UML类图

1、前言 最近在阅读 Android 源码&#xff0c;时常碰到代码中有一些巧妙的写法&#xff0c;简单的如 MediaPlayerService 中的 IFactory&#xff0c;我知道它是工厂模式&#xff0c;但是却不十分清楚它为什么这么用&#xff1b;复杂点的像 NuPlayer 中的 DeferredActions 机制…

云原生Kubernetes:kubectl管理命令

目录 一、理论 1.kubectl 管理命令 2.项目的生命周期 二、实验 1.kubectl 管理命令 2.项目的生命周期 三、总结 一、理论 1.kubectl 管理命令 &#xff08;1&#xff09;陈述式资源管理方法 kubernetes集群管理集群资源的唯一入口是通过相应的方法调用apiserver的接口…

进入低功耗和唤醒

休眠模式 进入休眠模式 如果使用 WFI 指令进入睡眠模式&#xff0c;则嵌套向量中断控制器 (NVIC) 确认的任意外设中断都会 将器件从睡眠模式唤醒。 如果使用 WFE 指令进入睡眠模式&#xff0c;MCU 将在有事件发生时立即退出睡眠模式。唤醒事件可 通过以下方式产生&#xff…

转载: 又拍云【PrismCDN 】低延时的P2P HLS直播技术实践

低延时的P2P HLS直播技术实践本文是第二部分《PrismCDN 网络的架构解析,以及低延迟、低成本的奥秘》低延时的P2P HLS直播技术实践 [首页 > Open Talk NO.41 | 2018 音视频技术沙龙深圳站 > 低延时 WebP2P 直播技术实践https://opentalk-blog.b0.upaiyun.com/prod/2018-0…

maven管理android项目

maven管理android项目 1.安装maven-android-sdk-deployer&#xff0c;下载地址&#xff1a;https://github.com/mosabua/maven-android-sdk-deployer 2.解压缩大英文路径文件夹 3.在压缩后的根目录执行mvn clean install -P 2.3.3&#xff08;2.3.3指的是android版本号&#x…

传输层协议--UDP

引入 传输层负责数据能够从发送端传输到接收端。 端口号&#xff08;Port&#xff09; 端口号标识了一个主机上进行通信的一个进程。 两个问题&#xff1a; 1. 一个进程可以绑定多个端口号吗&#xff1f;--可以 2.一个端口号可以绑定多个进程吗&#xff1f;--不可以 我们…

OpenCV(二十二):均值滤波、方框滤波和高斯滤波

目录 1.均值滤波 2.方框滤波 3.高斯滤波 1.均值滤波 OpenCV中的均值滤波&#xff08;Mean Filter&#xff09;是一种简单的滤波技术&#xff0c;用于平滑图像并减少噪声。它的原理非常简单&#xff1a;对于每个像素&#xff0c;将其与其周围邻域内像素的平均值作为新的像素值…

Python实现猎人猎物优化算法(HPO)优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…

2023年全国职业院校技能大赛 高等职业教育组(信息安全管理与评估)正式赛题

全国职业院校技能大赛 高等职业教育组 qq:2366046367 q群:670610200信息安全管理与评估 任务书 模块一 网络平台搭建与设备安全防护 一、 比赛时间 本阶段比赛时长为180分钟。 二、 赛项信息 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 第一阶段 网络平台搭建与设备安全防护 …

【软考】系统集成项目管理工程师(三)信息系统集成专业技术知识②

十二、面向对象 1、什么是对象&#xff1a;客观存在的事物都是对象 2、什么是类&#xff1a;类是确定对象将会拥有的特性和行为&#xff0c;它不是具体客观存在的东西 3、面向对象和面向过程的区别&#xff1f; &#xff08;1&#xff09;面向对象是将实物高度抽象化 &…

关闭vscode检查更新

要关闭 Visual Studio Code 的自动检查更新功能&#xff0c;请按照以下步骤进行操作&#xff1a; 打开 Visual Studio Code。点击左侧的扩展图标&#xff08;四个方块组成的图标&#xff09;。在扩展面板中&#xff0c;点击右上角的齿轮图标&#xff0c;选择 “扩展设置”。在…