助力智能辅助识别,基于轻量级卷积神经网络mobilenet开发构建结直肠息肉识别系统

news2024/11/25 15:43:01

AI与医学领域数据的结合早已是一个热门的方向,基于深度学习技术来开发辅助智能识别和检测模型对于疾病的高效智能化诊断有着重要的指导意义,这里本文的主要思想就是想要基于轻量级的CNN模型来尝试开发构建息肉识别系统,后续项目中会需要基于此项目来进一步开发构建检测端模型,首先看下实例效果,如下所示:

接下来看下数据集情况:

这里是基于mobilenet模型开发实现的息肉识别,首先来看下mobienet模型的实现:

def MobileNet(
    input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, classes=1000
):

    img_input = Input(shape=input_shape)
    x = convBlock(img_input, 32, alpha, strides=(2, 2))
    x = dwConvBlock(x, 64, alpha, depth_multiplier, block_id=1)
    x = dwConvBlock(x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2)
    x = dwConvBlock(x, 128, alpha, depth_multiplier, block_id=3)
    x = dwConvBlock(x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4)
    x = dwConvBlock(x, 256, alpha, depth_multiplier, block_id=5)
    x = dwConvBlock(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6)
    x = dwConvBlock(x, 512, alpha, depth_multiplier, block_id=7)
    x = dwConvBlock(x, 512, alpha, depth_multiplier, block_id=8)
    x = dwConvBlock(x, 512, alpha, depth_multiplier, block_id=9)
    x = dwConvBlock(x, 512, alpha, depth_multiplier, block_id=10)
    x = dwConvBlock(x, 512, alpha, depth_multiplier, block_id=11)
    x = dwConvBlock(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12)
    x = dwConvBlock(x, 1024, alpha, depth_multiplier, block_id=13)
    x = GlobalAveragePooling2D()(x)
    shape = (1, 1, int(1024 * alpha))
    x = Reshape(shape, name="reshape_1")(x)
    x = Dropout(dropout, name="dropout")(x)
    x = Conv2D(classes, (1, 1), padding="same", name="conv_preds")(x)
    x = Activation("softmax", name="act_softmax")(x)
    x = Reshape((classes,), name="reshape_2")(x)
    inputs = img_input
    model = Model(inputs, x, name="mobilenet_%0.2f" % (alpha))
    return model

MobileNet是一种轻量级的卷积神经网络模型,旨在在计算资源受限的移动设备上实现高效的图像分类和目标检测。其主要原理如下:

  1. Depthwise Separable Convolution:MobileNet使用Depthwise Separable Convolution来减少参数量和计算量。这是一种将标准卷积分解成深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)两个步骤的方法。深度卷积仅对输入的每个通道进行卷积,减少了卷积核的数量。逐点卷积使用1x1卷积核来将深度卷积的输出转化为期望的特征维度。这种分解有效降低了参数量,减少了计算量。

  2. 网络结构设计:MobileNet采用了基于深度可分离卷积的轻量网络结构。网络主要由一系列重复的卷积块和下采样层构成。卷积块包含了深度卷积、逐点卷积和激活函数。下采样层通常使用步长较大的深度可分离卷积来减少特征图的尺寸。通过这种设计,MobileNet减少了网络的深度和参数量,从而在较小的设备上实现了高效的推理。

优点:

  • 轻量高效:MobileNet采用了Depthwise Separable Convolution和轻量网络结构,大大减少了参数量和计算量,使得它在计算资源受限的设备上运行速度快。
  • 网络结构可定制:MobileNet的网络结构可以根据不同的需求和资源限制进行调整和定制。可以通过调整深度可分离卷积的层数和通道数来平衡准确性和模型大小。

缺点:

  • 精度受限:由于网络结构的轻量化和参数减少,MobileNet相对于大型网络模型,如ResNet和Inception等,可能牺牲了一定的精度。
  • 对复杂数据集的泛化能力有限:MobileNet在处理复杂数据集上的泛化能力可能相对较差,适用于较简单的图像分类和目标检测任务。

需要根据实际应用场景和资源限制来权衡使用MobileNet的优势和劣势。在资源受限的设备上,如移动设备或嵌入式系统,MobileNet是一种高效的选择,但在对准确性和复杂性要求较高的任务上,可能需要考虑更为复杂的网络结构。

部分图像数据编码错误,这里为了避免训练中断出现错误,事先过滤处理了,如下所示:

def filterImgs(dataDir="data/"):
    """
    过滤无效图片
    """
    for one_label in os.listdir(dataDir):
        oneDir=dataDir+one_label+"/"
        for one_pic in os.listdir(oneDir):
            try:
                one_img = Image.open(oneDir + one_pic)
                one_img = one_img.convert('RGB')
            except Exception as e:
                print("Exception: ", e)
                print("removing: ", oneDir + one_pic)
                os.remove(oneDir + one_pic)

接下来是随机划分数据集,如下所示:

# 加载解析创建数据集
if not os.path.exists("dataset.json"):
    train_dataset = []
    test_dataset = []
    all_dataset = []
    classes_list = os.listdir(datasetDir)
    classes_list.sort()
    print("classes_list: ", classes_list)
    with open("weights/classes.txt","w") as f:
        for one_label in classes_list:
            f.write(one_label.strip()+"\n")
    print("classes file write success!")
    num_classes=len(classes_list)
    for one_label in os.listdir(datasetDir):
        oneDir = datasetDir + one_label + "/"
        for one_pic in os.listdir(oneDir):
            one_path = oneDir + one_pic
            try:
                one_ind = classes_list.index(one_label)
                all_dataset.append([one_ind, one_path])
            except:
                pass
    train_ratio = 0.90
    train_num = int(train_ratio * len(all_dataset))
    all_inds = list(range(len(all_dataset)))
    train_inds = random.sample(all_inds, train_num)
    test_inds = [one for one in all_inds if one not in train_inds]
    for one_ind in train_inds:
        train_dataset.append(all_dataset[one_ind])
    for one_ind in test_inds:
        test_dataset.append(all_dataset[one_ind])
    dataset = {}
    dataset["train"] = train_dataset
    dataset["test"] = test_dataset
    with open("dataset.json", "w") as f:
        f.write(json.dumps(dataset))
else:
    with open("dataset.json") as f:
        dataset = json.load(f)
    train_dataset = dataset["train"]
    test_dataset = dataset["test"]
    with open("weights/classes.txt","r") as f:
        classes_list=[one.strip() for one in f.readlines() if one.strip()]
    print("classes_list: ", classes_list)
    num_classes = len(classes_list)
print("train_dataset_size: ", len(train_dataset))
print("test_dataset_size: ", len(test_dataset))

默认训练集-测试集比例为:9:1。

默认设定400次epoch的迭代计算,记录了训练过程中的loss和acc指标,如下所示:

0.5154747596153846 0.39809782608695654 1.2164945270006473 1.463877745296644
0.74609375 0.485054347826087 0.6819654452399566 1.5721689203511113
0.8022836538461539 0.40217391304347827 0.5187144568189979 1.8715582412222158
0.8312800480769231 0.44972826086956524 0.43426069140864104 2.1099254203879316
0.8467548076923077 0.38858695652173914 0.4049599589063571 2.324588900027068
0.8565204326923077 0.4375 0.37355997033703786 2.0007840654124385
0.8649338942307693 0.422554347826087 0.3477869880958818 2.169725459554921
0.8640324519230769 0.38315217391304346 0.35456895086771023 2.349976124970809
0.8644831730769231 0.53125 0.342520742247311 1.657330106134
0.8801081730769231 0.49728260869565216 0.3203347835761423 2.0639226540275244
0.8676382211538461 0.46195652173913043 0.3448066282300995 2.0199126316153486
0.8781550480769231 0.37228260869565216 0.31672593127363 2.674230181652567
0.8709435096153846 0.422554347826087 0.3340735392859922 2.081441982932713
0.8787560096153846 0.421195652173913 0.31750239360217863 2.3421299353889795
0.8753004807692307 0.41983695652173914 0.3376231001904951 2.512510569199272
0.8754507211538461 0.42527173913043476 0.3258774747642187 2.376193694446398
0.8715444711538461 0.4171195652173913 0.32688325070417845 2.3013603220815244
0.8814603365384616 0.5081521739130435 0.30448799279446787 2.0197541506394097
0.8816105769230769 0.4320652173913043 0.3044046882826548 2.317944365998973
0.8771033653846154 0.46059782608695654 0.32638321394244063 2.3432255931522534
0.8865685096153846 0.42527173913043476 0.30195715851508653 2.343923029692277
0.8781550480769231 0.34782608695652173 0.3149156108713494 2.805894618449004
0.8849158653846154 0.46603260869565216 0.29744300163852483 2.246819864148679
0.8796574519230769 0.42391304347826086 0.3122760229744017 2.5408245169598125
0.8843149038461539 0.41304347826086957 0.2980435914718188 2.9040553258812944
0.8844651442307693 0.44565217391304346 0.301070542468761 2.4935074059859565
0.8778545673076923 0.46875 0.31903693402329314 2.5308368672495303
0.8859675480769231 0.47690217391304346 0.2962351868358942 2.3352172322895215
0.8762019230769231 0.4171195652173913 0.3214864184578451 2.552992069202921
0.8817608173076923 0.3546195652173913 0.3080323341732415 3.0748863583025723
0.8859675480769231 0.4048913043478261 0.2998330883251933 2.8639659104139907
0.8780048076923077 0.3654891304347826 0.3131044839258091 2.6549240765364273
0.8813100961538461 0.4008152173913043 0.29940157852923643 2.437786770903546
0.8810096153846154 0.3858695652173913 0.3110712842227748 2.725678236588188
0.8819110576923077 0.39402173913043476 0.30586446364983344 2.745364329089289
0.8837139423076923 0.49728260869565216 0.29587585855132115 2.165059094843657
0.8853665865384616 0.41032608695652173 0.29879140187627995 2.6892030757406484
0.880859375 0.45516304347826086 0.30439808248327327 2.56989878675212
0.8861177884615384 0.4266304347826087 0.29264089558273554 2.4963120740392934
0.87890625 0.45652173913043476 0.30941993196924716 2.7461025974024897
0.8898737980769231 0.4076086956521739 0.2910010141607087 2.7433270008667656
0.8909254807692307 0.485054347826087 0.2936164183327212 2.269909195278002
0.8849158653846154 0.4375 0.2901983897810659 2.3913298378820005
0.8861177884615384 0.41032608695652173 0.30570005140124035 2.6114216213640957
0.8913762019230769 0.501358695652174 0.2792244608908032 2.255806109179621
0.8850661057692307 0.4633152173913043 0.29921287584763306 2.4893640694410903
0.8931790865384616 0.46875 0.28616888822916037 2.159032510674518
0.8871694711538461 0.43070652173913043 0.29577509704260874 2.753981243009153
0.8805588942307693 0.45652173913043476 0.3119760208870642 2.524707389914471
0.8834134615384616 0.46195652173913043 0.31217187227538 2.1665377046750938
0.8846153846153846 0.48097826086956524 0.30655765644489574 2.3538503646850586
0.8840144230769231 0.4701086956521739 0.30137708643451333 2.6392081250315127
0.8810096153846154 0.49728260869565216 0.3035102318972349 2.334437536156696
0.8832632211538461 0.4701086956521739 0.2975065018981695 2.7989701084468677
0.8919771634615384 0.44157608695652173 0.28025509832570183 2.729577733122784
0.8915264423076923 0.5203804347826086 0.2857905236216119 2.1341733466023984
0.8888221153846154 0.48233695652173914 0.28865195937956184 2.3932810918144556
0.8837139423076923 0.4116847826086957 0.3006662157937311 2.483801510023034
0.8880709134615384 0.41983695652173914 0.2955223592356421 2.7886516633241074
0.8891225961538461 0.42934782608695654 0.2838552057420692 3.0877410225246265
0.8817608173076923 0.39402173913043476 0.31288937635075015 3.0417406351669976
0.8820612980769231 0.46875 0.30851197733472174 2.3539296233135723
0.8810096153846154 0.501358695652174 0.30860623735218096 2.12857418993245
0.8858173076923077 0.49320652173913043 0.30020116351974696 2.0661076773767886
0.8880709134615384 0.3858695652173913 0.2871731912018731 2.768910314725793
0.8825120192307693 0.48097826086956524 0.2992731337614644 2.365106121353481
0.8870192307692307 0.40353260869565216 0.3022848378795271 3.2620466895725415
0.8853665865384616 0.5108695652173914 0.3016634952420226 2.230887700682101
0.8924278846153846 0.5258152173913043 0.28622997344399875 2.2626931356347124
0.8942307692307693 0.4796195652173913 0.27511951418665165 2.525853431743124
0.8820612980769231 0.39402173913043476 0.3043149922831127 2.827407816182012
0.888671875 0.4986413043478261 0.2855500362885113 2.48911336193914
0.8895733173076923 0.47282608695652173 0.2879279766124315 2.3041591696117236
0.8916766826923077 0.4945652173913043 0.2883217267584629 2.4073164566703467
0.884765625 0.5 0.3035451683144157 2.2481620363567187
0.8861177884615384 0.41983695652173914 0.29773898999421644 3.0533045633979468
0.8954326923076923 0.452445652173913 0.2754751418430645 2.847517200138258
0.8805588942307693 0.3491847826086957 0.30879578101806915 3.1635055956633193
0.8913762019230769 0.4320652173913043 0.2839208242053596 2.765966026679329
0.8849158653846154 0.41847826086956524 0.28731423686258495 2.853112210398135
0.8888221153846154 0.3858695652173913 0.2911150610754983 2.892658031505087
0.8946814903846154 0.4891304347826087 0.28125995732485676 2.299334660820339
0.8799579326923077 0.4891304347826087 0.30359778037438023 2.5078257218651148
0.8846153846153846 0.485054347826087 0.30712116156848 2.5113985175671787
0.8877704326923077 0.5230978260869565 0.28306188717341196 2.2123636473780093
0.8862680288461539 0.5258152173913043 0.2938474529207899 2.132711166920869
0.8874699519230769 0.47554347826086957 0.28447374888659954 2.502578263697417
0.8907752403846154 0.40353260869565216 0.2903130086532866 2.7296614595081494
0.8856670673076923 0.4633152173913043 0.29906475672928184 2.35868239402771
0.8951322115384616 0.5 0.27022388000757647 2.5580334767051367
0.8879206730769231 0.4429347826086957 0.28805010930563396 2.8339048986849575
0.8871694711538461 0.5108695652173914 0.29040914104105187 2.5183760031409888
0.8853665865384616 0.4782608695652174 0.29514566608346426 2.54559138028518
0.8852163461538461 0.4470108695652174 0.2896655301491802 2.843107969864555
0.8843149038461539 0.5353260869565217 0.2962305262649002 2.010954120884771
0.8897235576923077 0.4891304347826087 0.296751022983629 2.5319285703741987
0.8910757211538461 0.4986413043478261 0.2868757141001809 2.18648450270943
0.8883713942307693 0.53125 0.28492266045381814 2.0482969335887744
0.8946814903846154 0.422554347826087 0.27908764840461886 2.9815135935078496
0.8898737980769231 0.49320652173913043 0.2847877925870797 2.433269930922467
0.8877704326923077 0.421195652173913 0.2914668395398901 2.9109813026759936
0.8829627403846154 0.421195652173913 0.29618925826910597 2.9937719365824824
0.8921274038461539 0.36277173913043476 0.27185014001308727 2.7511361215425576
0.8880709134615384 0.4741847826086957 0.2914411407322265 2.38039491487586
0.8882211538461539 0.4578804347826087 0.2935656687029852 2.674441565638003
0.8838641826923077 0.47282608695652173 0.29322710331493557 2.443865242211715
0.8814603365384616 0.47554347826086957 0.3029458928638353 2.256706548773724
0.8904747596153846 0.36820652173913043 0.2842507206906493 3.283756266469541
0.8895733173076923 0.48097826086956524 0.2863835884222331 2.5577310220054956
0.8933293269230769 0.5 0.27664133453240186 2.285953506179478
0.8897235576923077 0.4633152173913043 0.28592746794367063 2.708962559700012
0.8859675480769231 0.43478260869565216 0.2881252178384994 3.0230617212212603
0.8868689903846154 0.43342391304347827 0.2907924360344903 2.6715903437655903
0.8895733173076923 0.483695652173913 0.28292465537714845 2.7363364748332812
0.8864182692307693 0.48097826086956524 0.287336961294596 2.4666915924652764
0.8901742788461539 0.53125 0.2798259420177111 2.1327932191931684
0.8831129807692307 0.4388586956521739 0.3002606089441822 3.0748048968937085
0.8909254807692307 0.5095108695652174 0.28100595016104096 2.447758068209109
0.8873197115384616 0.4470108695652174 0.29411856196104336 2.832267113353895
0.8840144230769231 0.44565217391304346 0.2924106385415563 2.7040689976319023
0.890625 0.4592391304347826 0.27290908159473193 2.8543530547100566
0.8849158653846154 0.4375 0.29191818297840655 2.6236291242682417
0.8862680288461539 0.421195652173913 0.30117998933061385 2.9916516283284063
0.888671875 0.4429347826086957 0.28470070398627567 2.809993168582087
0.8868689903846154 0.4741847826086957 0.2942093478587384 2.421338185020115
0.8889723557692307 0.3845108695652174 0.28771216556644785 3.2743787195371543
0.8841646634615384 0.3858695652173913 0.29487528580312544 2.8993696233500605
0.8939302884615384 0.45652173913043476 0.26520583897721595 2.826691472012064
0.8939302884615384 0.43342391304347827 0.2789954667767653 2.9413222851960557
0.8895733173076923 0.4429347826086957 0.2844223710350119 2.892515700796376
0.8864182692307693 0.5108695652173914 0.29274962837091434 2.7277851260226704
0.8960336538461539 0.45108695652173914 0.2670513882230108 2.921879706175431
0.892578125 0.4701086956521739 0.276901362499652 2.7721656301747197
0.8873197115384616 0.44972826086956524 0.2850624556438281 2.842447317164877
0.8910757211538461 0.5040760869565217 0.28625117471584904 2.332304633182028
0.8910757211538461 0.43478260869565216 0.2736904413725894 2.912581739218339
0.8913762019230769 0.4633152173913043 0.2878354856601128 2.8400660390439243
0.8967848557692307 0.46059782608695654 0.27548806473182946 2.6602804090665733
0.8892728365384616 0.44972826086956524 0.29633591300807893 2.950828033944835
0.8865685096153846 0.4701086956521739 0.28834600632007307 2.651406733886055
0.8892728365384616 0.5081521739130435 0.2977613198678367 2.547774542932925
0.8883713942307693 0.48641304347826086 0.27934261506351715 2.6460869675097256
0.8913762019230769 0.4578804347826087 0.2803412304761318 2.8015395662058955
0.8952824519230769 0.5095108695652174 0.28050794939582163 2.3571599929229072
0.8936298076923077 0.4361413043478261 0.2808823570286712 2.912127805792767
0.8943810096153846 0.46875 0.27543590319916034 2.870232965635217
0.8957331730769231 0.4388586956521739 0.27472519025636405 2.940248271693354
0.8949819711538461 0.44021739130434784 0.2686935191830763 3.029443419497946
0.8975360576923077 0.44157608695652173 0.2690277266710137 2.701536862746529
0.8864182692307693 0.46467391304347827 0.2826250663313728 2.6624635457992554
0.8951322115384616 0.5027173913043478 0.273179771235356 2.470261319823887
0.8882211538461539 0.47282608695652173 0.27425466776968765 2.6670112298882525
0.88671875 0.4945652173913043 0.29272530428492105 2.567967378574869
0.8910757211538461 0.5 0.281700994926863 2.4220072342001875
0.8882211538461539 0.4470108695652174 0.29281151889321894 2.823391644851021
0.8852163461538461 0.44429347826086957 0.28746507855920267 2.814295716907667
0.8924278846153846 0.46195652173913043 0.2758839978800657 3.002490893654201
0.8949819711538461 0.4782608695652174 0.2779910217146747 2.6343720322069912
0.8915264423076923 0.4361413043478261 0.28289966575371533 3.0601759267889936
0.8934795673076923 0.4673913043478261 0.267214122085044 2.678889995035918
0.8975360576923077 0.4904891304347826 0.26410165113898426 2.4440910712532373
0.8919771634615384 0.48777173913043476 0.27884331091235465 2.2524498545605205
0.8930288461538461 0.3532608695652174 0.27625790961946434 2.830244888430056
0.8955829326923077 0.41032608695652173 0.2755549062903111 2.962997395059337
0.8901742788461539 0.422554347826087 0.2871718997350679 2.7706573009490967
0.8951322115384616 0.38722826086956524 0.27266131336084354 3.0875673501387886
0.8871694711538461 0.47282608695652173 0.293385399863697 2.806963993155438
0.8928786057692307 0.42527173913043476 0.28919891885911614 3.0668149098106054
0.90234375 0.4741847826086957 0.2630252827388736 2.6485732482827227
0.8991887019230769 0.39809782608695654 0.26983211914865446 3.012707233428955
0.8948317307692307 0.4782608695652174 0.2672119884250256 2.436317547507908
0.8879206730769231 0.44157608695652173 0.29765915476645416 2.81890957251839
0.8928786057692307 0.47690217391304346 0.26492353338891494 2.4909602559131123
0.8982872596153846 0.42527173913043476 0.2733858806045296 2.657066936078279
0.8907752403846154 0.43070652173913043 0.28357432449523073 2.9273608611977617
0.8928786057692307 0.4741847826086957 0.2863177219584871 2.480356164600538
0.8928786057692307 0.46195652173913043 0.2823776298363765 2.570308540178382
0.8918269230769231 0.4429347826086957 0.2798408408505985 2.6541925357735674
0.892578125 0.45516304347826086 0.28498500341979355 2.7680121660232544
0.8907752403846154 0.47282608695652173 0.27438178355805576 2.577514560326286
0.8946814903846154 0.4483695652173913 0.2717607286042319 2.872758502545564
0.8973858173076923 0.48777173913043476 0.26058577955700457 2.555363178253174
0.8982872596153846 0.41983695652173914 0.2668059213946645 2.9633945174839185
0.8942307692307693 0.47146739130434784 0.2632574850979906 2.671549714129904
0.8957331730769231 0.43342391304347827 0.2704022080064393 2.800240910571554
0.8895733173076923 0.4388586956521739 0.28557478117111784 2.751232085020646
0.89453125 0.41032608695652173 0.27291692295469916 2.9171371511791064
0.8936298076923077 0.43478260869565216 0.27177835280935353 2.622857653576395
0.8913762019230769 0.46195652173913043 0.2760547229196303 2.7482729424601016
0.8973858173076923 0.4673913043478261 0.27051021287647575 2.687162731004798
0.8948317307692307 0.452445652173913 0.27357070445298004 2.731265394583992
0.888671875 0.4701086956521739 0.28516063685170734 2.671067388161369
0.8919771634615384 0.38179347826086957 0.27789646082629377 2.9050177854040395
0.8903245192307693 0.4578804347826087 0.27724158339417326 2.657291484915692
0.8933293269230769 0.5095108695652174 0.27831705978426796 2.421064511589382
0.8898737980769231 0.4375 0.28837586029504353 2.7983472761900527
0.9008413461538461 0.46195652173913043 0.25650350174580056 2.7743550279866094
0.8990384615384616 0.4904891304347826 0.26886529684998095 2.443142662877622
0.8985877403846154 0.485054347826087 0.2660124377311709 2.703730417334515
0.8912259615384616 0.4986413043478261 0.2697861988025789 2.3042280362999956
0.8598257211538461 0.7432065217391305 0.4212328173005237 1.015492866868558
0.9070012019230769 0.5543478260869565 0.269506339288245 3.278606839801954
0.9256310096153846 0.9660326086956522 0.1997622530683517 0.1067177899910704
0.9326923076923077 0.8926630434782609 0.17713574500969395 0.27043487439336983
0.9388521634615384 0.8695652173913043 0.16880519271720773 0.2978472427829452
0.939453125 0.873641304347826 0.1560389738700066 0.40900690529657446
0.9409555288461539 0.9456521739130435 0.1581013178309569 0.16054296485431815
0.9430588942307693 0.9592391304347826 0.1424108164725252 0.1725385525547292
0.9456129807692307 0.9619565217391305 0.13401868186282137 0.11228455335873624
0.947265625 0.7744565217391305 0.13112430714178258 1.1612390823986218
0.9471153846153846 0.9578804347826086 0.12766221242670256 0.11394871836123259
0.9489182692307693 0.9605978260869565 0.12287751093166523 0.11783750429648258
0.953125 0.7540760869565217 0.11246333584131207 1.199343696884487
0.9538762019230769 0.9429347826086957 0.11620759786232017 0.20155683678129446
0.9538762019230769 0.6820652173913043 0.11088700519758277 1.9666974622270335
0.9532752403846154 0.9592391304347826 0.11604829098527822 0.11509012370167868
0.9555288461538461 0.9619565217391305 0.10896476781636011 0.1059316041190987
0.9541766826923077 0.8288043478260869 0.10589474954534896 0.6907745249893354
0.9549278846153846 0.9592391304347826 0.10781335283984216 0.13076722735296126
0.9562800480769231 0.9429347826086957 0.10295770003442438 0.12272231418477453
0.9579326923076923 0.9497282608695652 0.10230837394080411 0.15555601615620696
0.9573317307692307 0.9171195652173914 0.09916634050806841 0.1521668275413306
0.95703125 0.9619565217391305 0.09746711085944508 0.11852377802943406
0.9568810096153846 0.7214673913043478 0.10240870227482027 1.3144661939662436
0.9585336538461539 0.9633152173913043 0.09885885442333976 0.11288989088295595
0.9568810096153846 0.9578804347826086 0.09724744179682322 0.11856496617521929
0.9582331730769231 0.9619565217391305 0.0917895897582639 0.11756004911401997
0.9552283653846154 0.9646739130434783 0.09890473421322755 0.11319699170037537
0.9601862980769231 0.9402173913043478 0.08759136572301102 0.13894028734901678
0.9585336538461539 0.9252717391304348 0.09484237361287412 0.14958441856762636
0.9627403846153846 0.9307065217391305 0.08853643841575831 0.14436438598710558
0.9595853365384616 0.9646739130434783 0.08759786136215553 0.10861176513540356
0.9627403846153846 0.9510869565217391 0.08897888747966275 0.13516570059785052
0.9618389423076923 0.8831521739130435 0.08706979445280293 0.4086050851189572
0.9612379807692307 0.9130434782608695 0.08969144215314792 0.1690959068744079
0.9606370192307693 0.9619565217391305 0.08747194374266726 0.10812375344255049
0.9624399038461539 0.9293478260869565 0.08368697476376277 0.15371871950185817
0.9582331730769231 0.7350543478260869 0.09069135622737051 1.393590763859127
0.9621394230769231 0.9497282608695652 0.08263452409300953 0.12613236418236856
0.9651442307692307 0.9415760869565217 0.08160244606551714 0.1380750992861779
0.9637920673076923 0.9510869565217391 0.08454167486231129 0.15291154200373136
0.9616887019230769 0.9578804347826086 0.08483155266954921 0.13714137027526033
0.9612379807692307 0.9755434782608695 0.0834715349617629 0.10102907286794938
0.9630408653846154 0.9524456521739131 0.0807554003997491 0.13634527183097342
0.9625901442307693 0.9565217391304348 0.07921249677803224 0.13621016350858237
0.9643930288461539 0.9551630434782609 0.0776787821904201 0.1563793986266398
0.9627403846153846 0.938858695652174 0.07884910295027882 0.15982770421744688
0.9673978365384616 0.9415760869565217 0.07452325086789922 0.14051217160633075
0.9637920673076923 0.936141304347826 0.0790394495259254 0.15583667282581978
0.9661959134615384 0.8586956521739131 0.07550027928650357 0.47083679003560025
0.9666466346153846 0.9402173913043478 0.07790034638870005 0.1441653453461502
0.9649939903846154 0.9320652173913043 0.07327305444946083 0.17035680782535803
0.96484375 0.936141304347826 0.07614161825935858 0.14239099296822172
0.9651442307692307 0.9402173913043478 0.07680537250192944 0.13579100224634874
0.9699519230769231 0.9470108695652174 0.06933153681396877 0.1438648452091476
0.9663461538461539 0.9510869565217391 0.07276850945345359 0.1354364890443242
0.9722055288461539 0.9551630434782609 0.06706397987503666 0.14891471495123013
0.9655949519230769 0.9497282608695652 0.07768085598945618 0.14486782823729774
0.9679987980769231 0.9538043478260869 0.06987947401536915 0.15535697114208472
0.9711538461538461 0.9334239130434783 0.06603014429744619 0.16611284829433198
0.9710036057692307 0.9592391304347826 0.06561606363370978 0.1312575338448843
0.9696514423076923 0.9375 0.06771826268959558 0.17458214473141276
0.9679987980769231 0.9497282608695652 0.07175122190388859 0.14467759900118993
0.9716045673076923 0.9415760869565217 0.0603583000467132 0.17769713505454685
0.9701021634615384 0.9456521739130435 0.06915450326834197 0.1427680142223835
0.9692007211538461 0.9442934782608695 0.07002855833917028 0.1594379726878327
0.9699519230769231 0.9497282608695652 0.06675829201524791 0.1452396148815751
0.9699519230769231 0.9307065217391305 0.06727125447762844 0.1884279001666152
0.97265625 0.9375 0.06359289310281523 0.14785364472671694
0.9710036057692307 0.9442934782608695 0.06528271435056993 0.16405626767031525
0.9719050480769231 0.7730978260869565 0.05937542561710311 0.9209518678810286
0.9696514423076923 0.9456521739130435 0.06538690295509206 0.16750349711788737
0.9740084134615384 0.9266304347826086 0.061936326996566586 0.17650983630396103
0.9675480769230769 0.9320652173913043 0.06448002191161951 0.1901563728309196
0.97265625 0.9334239130434783 0.061051013053936634 0.14732481304394163
0.9719050480769231 0.9456521739130435 0.060758976225490466 0.18843124596321065
0.9743088942307693 0.9510869565217391 0.058232051533895386 0.156291724982388
0.9708533653846154 0.9551630434782609 0.06508539441934912 0.13943104640297269
0.9714543269230769 0.9483695652173914 0.06106703921418207 0.15019657458786084
0.970703125 0.9415760869565217 0.06211045496568728 0.18714634273403688
0.9702524038461539 0.9429347826086957 0.06069733662969576 0.17426032512246267
0.9735576923076923 0.9605978260869565 0.06223451679957529 0.15214428807603722
0.9734074519230769 0.9592391304347826 0.05859835765470332 0.1387298446472572
0.9728064903846154 0.9483695652173914 0.05963121925651649 0.20609334101090612
0.9735576923076923 0.9565217391304348 0.06061598067865886 0.13530116288861987
0.97265625 0.9470108695652174 0.05756676650064317 0.17539020681389325
0.9740084134615384 0.9538043478260869 0.056590009039679826 0.17072418349309135
0.9779146634615384 0.9592391304347826 0.05367860949403481 0.13717470503331203
0.9752103365384616 0.9402173913043478 0.0577723619801243 0.18357371405252945
0.9735576923076923 0.9456521739130435 0.05724632404095386 0.18338390261582707
0.9744591346153846 0.9442934782608695 0.05670346738434791 0.19027767565263354
0.9771634615384616 0.9456521739130435 0.049958568283238074 0.17598935127582238
0.9798677884615384 0.9524456521739131 0.0477093883796792 0.18833276443183422
0.9773137019230769 0.9470108695652174 0.05544665716913117 0.1834350163521974
0.9728064903846154 0.9497282608695652 0.05782148010341469 0.16307297976606566
0.9759615384615384 0.9470108695652174 0.05428400979984032 0.18126220923200573
0.9759615384615384 0.9578804347826086 0.05345431073846367 0.17642718176964833
0.9737079326923077 0.9402173913043478 0.05747592884486389 0.18377926022462224
0.9777644230769231 0.9442934782608695 0.05193322618582057 0.1918139983292507
0.9770132211538461 0.9497282608695652 0.05182896202649527 0.17220531730487457
0.9791165865384616 0.9334239130434783 0.05054853064351706 0.19391078161804573
0.9783653846153846 0.9415760869565217 0.04850271838054491 0.1815838515556053
0.9722055288461539 0.9497282608695652 0.05920970412821939 0.18456623626306004
0.9803185096153846 0.936141304347826 0.04561567636630151 0.21254644544957124
0.9767127403846154 0.9538043478260869 0.049355140853619486 0.17224647691878286
0.9750600961538461 0.9320652173913043 0.05489308323012665 0.18301702444644077
0.9792668269230769 0.9578804347826086 0.04884947778044499 0.14222566637655962
0.9765625 0.938858695652174 0.052177301541423034 0.21136548159563023
0.9789663461538461 0.9470108695652174 0.048863304984339405 0.1824850377869671
0.9770132211538461 0.9538043478260869 0.052307245218029354 0.187277604517041
0.9768629807692307 0.9239130434782609 0.05057695943217438 0.21569863156132077
0.9777644230769231 0.9375 0.05003865255387679 0.2065663603539376
0.978515625 0.9456521739130435 0.04859285074976819 0.15998649058620568
0.9788161057692307 0.9442934782608695 0.04855424452342469 0.2313597056326335
0.9771634615384616 0.9470108695652174 0.05040304333628088 0.1795335964947615
0.9770132211538461 0.9456521739130435 0.052662830037521556 0.20274742711942806
0.9779146634615384 0.9402173913043478 0.049361286680393204 0.17622049991041422
0.9773137019230769 0.9483695652173914 0.04617622892412608 0.18444545946777394
0.9797175480769231 0.9415760869565217 0.044571893927870684 0.18674243541191454
0.9791165865384616 0.9470108695652174 0.044213062519422516 0.19548630649628845
0.9800180288461539 0.9497282608695652 0.04497824175912403 0.19020815212886943
0.9794170673076923 0.938858695652174 0.04467525872090706 0.2051856924334298
0.9767127403846154 0.9483695652173914 0.05103650511199913 0.1996752929509334
0.9779146634615384 0.9415760869565217 0.04662909196513983 0.1985785875307477
0.9794170673076923 0.936141304347826 0.04930423702367429 0.1937180313322207
0.9806189903846154 0.9429347826086957 0.04402356656926433 0.20036879558440135
0.9813701923076923 0.9524456521739131 0.04425908683949204 0.15839096758028734
0.9800180288461539 0.9456521739130435 0.0469821347053137 0.21845647968787132
0.9807692307692307 0.9470108695652174 0.041054458930515327 0.22594231296249706
0.9770132211538461 0.9375 0.05193418952638659 0.15642295964062214
0.9800180288461539 0.9334239130434783 0.04324858545078314 0.24183543463763985
0.9803185096153846 0.9470108695652174 0.04401226919547368 0.180644297759737
0.9812199519230769 0.9402173913043478 0.041690107198799245 0.20068481098860502
0.9806189903846154 0.9375 0.04432743249176733 0.19824959021871505
0.9801682692307693 0.9347826086956522 0.04190609308016764 0.23334059418867464
0.9815204326923077 0.9565217391304348 0.04403424169812262 0.17446431189613498
0.9791165865384616 0.9442934782608695 0.0447500769121409 0.18581873158235912
0.978515625 0.9402173913043478 0.04743666651875873 0.20852652366232613
0.9812199519230769 0.9442934782608695 0.04298889765498014 0.17858407952134375
0.9786658653846154 0.936141304347826 0.04355602167141534 0.22165330454869114
0.9819711538461539 0.9470108695652174 0.04178643593555675 0.19398524379357696
0.9795673076923077 0.9347826086956522 0.04367016721348941 0.22026323571639217
0.9809194711538461 0.9429347826086957 0.04455814160162565 0.19403020757042966
0.9816706730769231 0.9456521739130435 0.04125924324118667 0.20019776390298552
0.9813701923076923 0.9456521739130435 0.04289776419976148 0.20082146085231847
0.9788161057692307 0.9456521739130435 0.04649309000636164 0.1923993982212699
0.9809194711538461 0.9456521739130435 0.04260789693720513 0.223775469009643
0.9810697115384616 0.9402173913043478 0.0425325034753209 0.2083872464718297
0.9827223557692307 0.9429347826086957 0.04026543066006875 0.20150816497271476
0.9807692307692307 0.9497282608695652 0.04362037079324811 0.18870975927490255
0.9801682692307693 0.9483695652173914 0.04324448031792809 0.18737525739909514
0.9818209134615384 0.9320652173913043 0.04328284093823571 0.212721022443198
0.9819711538461539 0.936141304347826 0.04251168659105203 0.2513317824543818
0.9809194711538461 0.9429347826086957 0.04495084425042688 0.19596129906890186
0.9815204326923077 0.9456521739130435 0.043353336582815524 0.17945299039939014
0.9834735576923077 0.9293478260869565 0.037332745909225196 0.259054579043194
0.9806189903846154 0.9524456521739131 0.0433379349801376 0.1658448082718836
0.9815204326923077 0.9442934782608695 0.04047241779699107 0.22549053322037924
0.9809194711538461 0.9415760869565217 0.04345633311095298 0.2273846987594405
0.98046875 0.9483695652173914 0.042025313003530476 0.16071579051102794
0.9791165865384616 0.9470108695652174 0.04326277513777873 0.17884452932554742
0.9798677884615384 0.936141304347826 0.043055135188926494 0.21178825636920723
0.9809194711538461 0.9524456521739131 0.04118108507534019 0.2028218840562698
0.9774639423076923 0.9375 0.04753454151516333 0.22450798252880896
0.9819711538461539 0.9497282608695652 0.040747074870383725 0.1807518426541482
0.9800180288461539 0.9442934782608695 0.042177971253225296 0.2125108668418682
0.9831730769230769 0.9456521739130435 0.04076371839955055 0.1964559689083177
0.9819711538461539 0.9429347826086957 0.038143587275744024 0.2036857379235975
0.9813701923076923 0.9456521739130435 0.042731816436571535 0.20527269436127465
0.9813701923076923 0.9456521739130435 0.04047032824326799 0.21024836554779144
0.9807692307692307 0.938858695652174 0.04338226540354439 0.21516707250797798
0.9836237980769231 0.9415760869565217 0.03955918669446244 0.21384809529611273
0.978515625 0.9510869565217391 0.043211904333405146 0.18551778859134926
0.9834735576923077 0.9483695652173914 0.03824753260106753 0.18827630799395315
0.9822716346153846 0.9497282608695652 0.04040624508930845 0.1778528825379908
0.98046875 0.9347826086956522 0.041367857818841 0.24180647698433502
0.9836237980769231 0.9456521739130435 0.03946849920377925 0.21254267458520507
0.9818209134615384 0.9483695652173914 0.038994924209943674 0.19110952352133134
0.9812199519230769 0.9497282608695652 0.04163269028112364 0.1977178234121074
0.9807692307692307 0.9470108695652174 0.04097954266035231 0.18991075441970126
0.9797175480769231 0.9470108695652174 0.04592188870251098 0.18352113757282495
0.9806189903846154 0.9402173913043478 0.043144331519775175 0.2192580147150337
0.9819711538461539 0.9456521739130435 0.039872977852260544 0.20926870861212196
0.9806189903846154 0.9483695652173914 0.03887190216244982 0.1797277572483796
0.9810697115384616 0.9470108695652174 0.042583192022553146 0.20250466164282482
0.9818209134615384 0.9429347826086957 0.038324670578171766 0.20854254543740788
0.982421875 0.9497282608695652 0.03988815995175033 0.19960044534957927
0.9828725961538461 0.9429347826086957 0.04008368882715821 0.22782816130505956
0.9812199519230769 0.9524456521739131 0.040091900089884384 0.17747803048595137
0.9852764423076923 0.9442934782608695 0.03662994625035655 0.21332521456276046
0.9827223557692307 0.9483695652173914 0.042593549519481785 0.19427428904758848
0.9825721153846154 0.9483695652173914 0.03751505648369857 0.2034865390463813
0.9818209134615384 0.9470108695652174 0.03944827117028091 0.20417926517193732
0.9831730769230769 0.9524456521739131 0.03950558457626567 0.19233236537294704
0.9807692307692307 0.9415760869565217 0.040359040952423056 0.2154917812693621
0.9806189903846154 0.9442934782608695 0.042878100665872734 0.21596553931822596
0.9816706730769231 0.9538043478260869 0.0380077968436056 0.19643985715937679
0.9819711538461539 0.9470108695652174 0.03952874999553247 0.21059925655034653
0.9810697115384616 0.9524456521739131 0.04102906323029087 0.19199126809025588
0.9816706730769231 0.9510869565217391 0.040327877668600055 0.19521407079477998

整体对比可视化如下所示:

整体测试识别准确率还不错,后续会再此基础上开发构建检测模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/977388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

darknet识别(某验)文字点选验证码

今天介绍darknet识别文字点选验证码, Darknet is an open source neural network framework written in C and CUDA. darknet是基于yolo算法的神经网络框架。 废话少说先热热身 平台是Ubuntu20,首先要安装NVIDIA驱动 1、安装驱动 NVIDIA GeForce 驱动…

FPGA基本算术运算

FPGA基本算术运算 FPGA基本算术运算1 有符号数与无符号数2 浮点数及定点数I、定点数的加减法II、定点数的乘除法 3 仿真验证i、加减法验证ii、乘除法验证 FPGA基本算术运算 FPGA相对于MCU有并行计算、算法效率较高等优势,但同样由于没有成型的FPU等MCU内含的浮点数运…

11 滑动窗口最大值

滑动窗口最大值 题解1 优先队列(大顶堆)(双循环没过)改进后 题解2 单调队列deque(设计同labuladong)标准题解(同接雨水,deque存下标) 题解1 优先队列(大顶堆&…

77 # koa 中间件的应用

调用 next() 表示执行下一个中间件 const Koa require("koa");const app new Koa();app.use(async (ctx, next) > {console.log(1);next();console.log(2); });app.use(async (ctx, next) > {console.log(3);next();console.log(4); });app.use(async (ctx,…

aardio语言简易中英单词翻译

import win.ui; /*DSG{{*/ mainForm win.form(text"简易中英文单词离线翻译";right757;bottom467;bgcolor15780518) mainForm.add( buttonWord{cls"button";text"翻译(CtrlS)";left121;top384;right279;bottom425;z3}; editFrom{cls"edit&…

官方项目《内容示例》中Common UI部分笔记:Common UI 分场景使用教程

文章目录 前言0. 通用设置0.1 开启插件0.2 设置Viewport 1. 分场景教程1. 1 在仅使用鼠标控制的场景下Common Activatable StackCommon Activatable Widget 1.2 当焦点落到一个按钮时显示默认确认(Click/Accept)按键图标Common Input Action DataBaseInp…

JVM--Hotspot Architecture 详解

一、Java Virtual Machine (JVM)概述 Java Virtual Machine 虚拟机 (JVM) 是一种抽象的计算机。JVM本身也是一个程序,但是对于编写在其中执行的程序来说,它看起来像一台机器。对于特定的操作系统&#xff…

docker介绍和安装

docker安装 下载Docker依赖组件 yum -y install yum-utils device-mapper-persistent-data lvm2 设置下载Docker的镜像源为阿里云 yum-config-manager --add-repo http://mirrors.aliyun.com/dockerce/linux/centos/docker-ce.repo 安装Docker服务 yum -y install docker-ce 安…

Python 3.x 异常处理

文章目录 异常处理1. 什么是异常2. Python 中的异常python 中异常演示错误类型捕获try-except 语句带有多个 expect 的 try 语句捕获未知错误 异常参数else 子句finally子句练习 3:简化除法判断 3. 自定义异常抛出异常—raise应用场景抛出异常练习 4:自定…

innovus:route within pin 和限制pin shape内via 数量

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 setNanoRouteMode -routeWithViaInPin "1:1" setNanoRouteMode -routeWithViaOnlyForStandardCellPin "1:1"

git 后悔药

前言 自上而下,撤销可以分为从远程库撤销,从本地库撤销,从暂存库撤销。 例子:代码已经提交了三个记录到远程库,分别对应了记录1,内容1,记录2,内容2,记录3,内…

LeetCode73.矩阵置零

这道题我感觉还是挺简单的,一下子就想到了,不过我的算法很简单很垃圾,效率很低,我一看完题的想法就是直接遍历一遍数组,然后把为0的元素的行和列都存起来,然后把这些行和列都置零就好了,但是这里…

IP地址、子网掩码、网络地址、广播地址、IP网段

文章目录 IP地址IP地址分类子网掩码网络地址广播地址IP网段 本文主要讨论iPv4地址。 IP地址 实际的 IP 地址是一串32 比特的数字,按照 8 比特(1 字节)为一组分成 4 组,分别用十进制表示然后再用圆点隔开,这就是我们平…

chkdsk H:/F

chkdsk H:/F TF卡损坏

nios里面打开eclipse遇到Unresolved inclusion: “system.h“等问题

问题:在Nios中打开软核部分代码时,遇到一堆Unresolved inclusion: "system.h"等问题报错 原因:bsp文件和软核没关联,导致找不到头文件地址,关联一下就好 解决步骤: 右键bsp文件,点击…

虚幻引擎集成web前端<一>:win环境UE4.27导出像素流并集成到vue2环境(附案例)

本案例附件:https://download.csdn.net/download/rexfow/88303544 第一部分:虚幻引擎导出像素流windows包 第1步:软件设置 -AudioMixer -PixelStreamingIPlocalhost -PixelStreamingPort8888 第2步:信令服务器设置 1、执行run_l…

2023移动软件开发实验6

2023年夏季《移动软件开发》实验报告 姓名和学号?本实验属于哪门课程?中国海洋大学23夏《移动软件开发》实验名称?实验6:推箱子博客地址?XXXXXXXGithub仓库地址?https://github.com/enfantsRichesDeprimes…

十三、MySQL(DQL)语句执行顺序

1、DQL语句执行顺序: (1)from来决定表 # where来指定查询的条件 (2)group by指定分组 # having指定分组之后的条件 (3)select查询要返回哪些字段 (4)order by根据字段内容&#…

7.0: Dubbo服务调用源码解析

课程内容 服务提供者处理请求流程解析服务消费发送请求流程解析服务提供者端线程模型解析服务消费者端线程模型解析1.服务提供者处理请求流程解析 processon链接:服务调用流程图| ProcessOn免费在线作图,在线流程图,在线思维导图 2. 服务消费端执行逻辑 MockClusterInvoker.in…

【大数据之Kafka】七、Kafka Broker之Kafka副本

1 副本基本信息 Kafka 副本可以提高数据可靠性。分为Leader 和 Follower;Kafka 生产者只会把数据发往 Leader,然后 Follower 找Leader 进行同步数据。   Kafka 默认副本 1 个,生产环境一般配置为 2 个,保证数据可靠性&#xff1…