自定义类型:结构体、枚举、联合

news2025/1/18 2:01:28

目录

结构体

结构体的基础知识

 结构的声明

 特殊的声明

结构体的自引用

结构体变量的定义和初始化

结构体内存对齐

修改默认对齐数

结构体传参

位段

什么是位段

位段的内存分配

位段的跨平台问题

位段的应用

枚举

枚举类型的定义

枚举的优点

联合体(共用体)

联合类型的定义

联合的特点

联合体大小的计算


结构体

结构体的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

 结构的声明

struct tag
{
    member-list;
}variable-list;

例如,描述一个学生:

struct Stu
{
	char name[20];//名字
	int age;//年龄
	char sex[5];//性别
	char id[20];//学号
}; //分号不能丢

 特殊的声明

在声明结构的时候,可以不完全的声明。比如:

//匿名结构体类型
struct
{
	int a;
	char b;
	float c;
}x;

struct
{
	int a;
	char b;
	float c;
}arr[20],*p;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?

//在上面代码的基础上,下面的代码合法吗?

p=&x;

警告:编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。

结构体的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

struct Node
{
	int data;
	struct Node next;
};
//可行否?
//如果可以,那sizeof(struct Node)是多少?
//答:不可以

正确的自引用方式:

struct Node
{
	int data;
	struct Node* next;
};
typedef struct
{
	int data;
	Node* next;
}Node;
//这样写代码不可以!

//解决方案
typedef struct Node
{
	int data;
	struct Node* next;
}Node;

结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Node
{
	int data;
	struct Node* next;
};

typedef struct Node
{
	int data;
	struct Node* next;
}Node;

struct Point
{
	int x;
	int y;
}p1;

struct Point p2;

struct Point p3 = { 1,2 };

struct Stu
{
	char name[15];
	int age;
};

struct Stu s = { "zhangsan",20 };

struct Node
{
	int data;
	struct Point p;
	struct Node* next;
}n1 = { 10,{1,2},NULL };//结构体嵌套初始化

struct Node n2 = { 20,{5,6},NULL };//结构体嵌套初始化

结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐

#include <stddef.h>
#include <stdio.h>
struct S1
{
	char c1;
	int i;
	char c2;
};

struct S2
{
	int i;
	char c1;
	char c2;
};

int main()
{
	struct S1 s1 = { 0 };

	//printf("%d\n",sizeof(struct S1));
	//printf("%d\n", sizeof(struct S2));

	printf("%d\n",offsetof(struct S1,c1));//可以计算结构体的成员相较于结构体起始位置的偏移量
	printf("%d\n", offsetof(struct S1, i));
	printf("%d\n", offsetof(struct S1, c2));
	return 0;
}

从上面的现象分析,我们发现结构成员不是按照顺序在内存中连续存放的,而是有一定的对齐规则。

结构体内存的对齐规则:

1.结构体的第一个成员永远放在相较于结构体变量起始位置的偏移量为0的位置。

2.从第二个成员开始,往后的每个成员都要对齐到某个对齐数的整数倍处。

对齐数:结构体成员自身的大小和和默认对齐数的较小值。

VS上默认对齐数是8.

gcc没有默认对齐数,对齐数就是结构体成员的自身大小。

3.结构体的总大小,必须是最大对齐数的整数倍。

4.如果嵌套了结构体的情况,嵌套的结构体对齐到自身的最大对齐数的整数倍,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

练习1

struct S1
{
	char c1;
	int i;
	char c2;

};
int main()
{
	printf("%d\n",sizeof(struct S1));
	return 0;
}

12 

练习2

struct S2
{
	char c1;
	char c2;
	int i;
};
int main()
{
	printf("%d\n", sizeof(struct S2));
	return 0;
}

8

练习3

struct S3
{
    double d;
    char c;
    int i;
};
printf("%d\n", sizeof(struct S3))

16

练习4--结构体嵌套问题

struct S3
{
	double d;
	char c;
	int i;
};

struct S4
{
    char c1;
    struct S3 s3;
    double d;
};
printf("%d\n", sizeof(struct S4));

32

为什么存在内存对齐?

大部分的参考资料都是如是说的:

1. 平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{
    char c1;
    int i;
    char c2;
};
struct S2
{
    char c1;
    char c2;
    int i;
};

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

修改默认对齐数

 使用预处理指令#pragma,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认

#pragma pack(1)//设置默认对齐数位1

struct S2
{
	char c1;
	int i;
	char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
	printf("%d\n",sizeof(struct S1));
	printf("%d\n", sizeof(struct S2));
	return 0;
}

12

6

结论:结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。

结构体传参

直接上代码

struct S
{
	int data[100];
	int num;
};

//结构体传参
void print1(struct S tmp)
{
	printf("%d\n",tmp.num);
}
//指针传参
void print2(const struct S* ps)
{
	printf("%d\n", ps->num);
}

int main()
{
	struct S s = { {1,2,3},100 };
	print1(s);//传结构体
	print2(&s);//传指针
	return 0;
}

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:结构体传参的时候,要传结构体的地址。

位段

结构体讲完就得讲讲结构体实现位段的能力。

什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。

比如:

struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

A就是一个位段类型。
那位段A的大小是多少?

8

位段的内存分配

1. 位段的成员可以是int unsigned int signed int 或者是 char(属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};

int main()
{
	struct S s = { 0 };
	s.a = 10;
	s.b = 12;
	s.c = 3;
	s.d = 4;

	return 0;
}

空间是如何开辟的?

位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。

位段的应用

枚举

枚举顾名思义就是一一列举。把可能的取值一一列举。比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。

枚举类型的定义

enum Color//颜色
{
	RED,//0
	GREEN,//1
	BLUE//2
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{  }中的内容是枚举类型的可能取值,也叫枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。

例如:

enum Color//颜色
{
    RED=1,
    GREEN=2,
    BLUE=4
};

枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量

enum Color
{
	RED=1,//0
	GREEN=2,//1
	BLUE=4//2
};
int main()
{
	enum Color c = GREEN;

	c = 5;//err

	return 0;
}

联合体(共用体)

联合类型的定义

联合也是一种特殊的自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。

//联合变量的声明
union Un
{
	char c;
	int i;
};
int main()
{
	//联合变量的定义
	union Un un;
	//计算变量的大小
	printf("%d\n",sizeof(un));
	return 0;
}

联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。

union Un
{
	char c;
	int i;
};
int main()
{
	union Un un;
	printf("%p\n",&(un.i));
	printf("%p\n",&(un.c));
	return 0;
}

 

以下代码的输出结果是什么 

union Un un;
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);

 11223355

面试题: 

判断当前计算机的大小端存储

int check_sys()
{
	union
	{
		int i;
		char c;
	}un = {.i=1};
	return un.c;
}
int main()
{
	int ret = check_sys();

	if (ret == 1)
		printf("小端\n");
	else
		printf("大端\n");
	return 0;
}

联合体大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

union Un1
{
	char c[5];
	int i;
};

union Un2
{
	short c[7];
	int i;
};

int main()
{
	printf("%d\n",sizeof(union Un1));//8
	printf("%d\n", sizeof(union Un2));//16
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/967508.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mysql创建用户并且给指定用户添加某个库的所有权限

注意&#xff1a; 运行以下命令首先运行的用户需要有以下操作权限才可以执行 创建用户 创建用户&#xff1a;命令中的’username’替换为您要创建的用户名&#xff0c;‘host’替换为用户的主机名或IP地址如果都可以访问则配置’%&#xff0c;password’替换为用户的密码 CRE…

WoW GM

当年黑翼被人黑G以后&#xff0c;后来我就自己开团&#xff0c;今天整理电脑还发现截图。。。。

AI绘画:StableDiffusion实操教程-斗罗大陆2-江楠楠-常服(附高清图下载)

前段时间我分享了StableDiffusion的非常完整的教程&#xff1a;“AI绘画&#xff1a;Stable Diffusion 终极宝典&#xff1a;从入门到精通 ” 尽管如此&#xff0c;还有读者反馈说&#xff0c;尽管已经成功安装&#xff0c;但生成的图片与我展示的结果相去甚远。真实感和质感之…

h5页面使用js注入企业微信sdk

let script document.createElement(script); //定义script标签 script.type text/javascript; script.src http://res.wx.qq.com/open/js/jweixin-1.2.0.js; document.getElementsByTagName(body)[0].appendChild(script); //将script标签插入到body下面

ISO/IEC标准组织介绍(三十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药. 更多原创,欢迎关注:Android…

[论文笔记]SiameseNet

引言 这是Learning Text Similarity with Siamese Recurrent Networks的论文笔记。 论文标题意思是利用孪生循环神经网络学习文本相似性。 什么是孪生神经网络呢?满足以下两个条件即可: 输入是成对的网络结构和参数共享(即同一个网络)如下图所示: 看到这种图要知道可能代…

C语言:截断+整型提升+算数转换练习

详情关于整型提升、算数转换与截断见文章&#xff1a; 《C语言&#xff1a;整型提升》 《C语言&#xff1a;算数转换》 一、代码一 int main() { char a -1; signed char b -1; unsigned char c -1; printf("%d %d %d", a, b, c); return 0; } 求…

mp代码生成插件

mp代码生成插件 1.下载下面的插件 2.连接测试 3.生成代码的配置 4.生成代码 红色的是刚刚生成的。 我觉得不如官方的那个好用&#xff0c;唯一的好处就是勾选的选项能够看的懂得。

代码随想录第36天|435. 无重叠区间 (需要二刷),763.划分字母区间,56. 合并区间

435. 无重叠区间 &#xff08;需要二刷&#xff09; 本题其实和452.用最少数量的箭引爆气球 (opens new window)非常像&#xff0c;弓箭的数量就相当于是非交叉区间的数量&#xff0c;只要把弓箭那道题目代码里射爆气球的判断条件加个等号&#xff08;认为[0&#xff0c;1][1&a…

公司电脑文件自动加密——「天锐绿盾」

「天锐绿盾」是一种文件自动加密工具&#xff0c;可以与天锐绿盾应用服务器安全接入系统结合使用&#xff0c;实现只有安装了加密客户端的电脑才能访问应用服务器。此外&#xff0c;该工具还可以指定办公人员在对某些类型的文件进行新建、编辑时&#xff0c;自动备份到天锐绿盾…

没有使用sniffer dongle在windows抓包蓝牙方法分享

网上很多文章都是介绍买一个sniffer dongle来抓蓝牙数据,嫌麻烦又费钱,目前找到一个好方法,不需要sniffer就可以抓蓝牙数据过程,现分享如下: (1)在我资源附件找到相关安装包或者查看如下链接 https://learn.microsoft.com/zh-cn/windows-hardware/drivers/bluetooth/testing-bt…

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书海口经济学院图书馆

2023开学礼《乡村振兴战略下传统村落文化旅游设计》许少辉八一新书海口经济学院图书馆

通过Docker Compose安装MQTT

一、文件和目录说明 1、MQTT安装时的文件和目录 EMQX 安装完成后会创建一些目录用来存放运行文件和配置文件&#xff0c;存储数据以及记录日志。 不同安装方式得到的文件和目录位置有所不同&#xff0c;具体如下&#xff1a; 注意&#xff1a; 压缩包解压安装时&#xff0c;目…

第 3 章 栈和队列(顺序栈,算法 3.3,使用栈解答迷宫问题)

1. 背景说明 若迷宫 maze 中存在从入口 start 到出口 end 的通道&#xff0c;则求得一条存放在栈中(从栈底到栈顶)&#xff0c;并返回 TRUE&#xff1b;否则返回 FALSE&#xff0c;注意&#xff0c;该解并非最优解&#xff0c; 最优解需要求得最短路径且可能并非一条。 迷宫…

Auto DevOps介绍

1 Preface/Foreword 随着国际化&#xff0c;信息化&#xff0c;当今是一个VUCA时代。 VUCA&#xff1a;Volatile &#xff08;易变的&#xff09;&#xff0c;Uncertain &#xff08;不确定的&#xff09;&#xff0c;Complicated &#xff08;复杂的&#xff09;&#xff0c…

类ChatGPT大模型LLaMA及其微调模型

1.LLaMA LLaMA的模型架构:RMSNorm/SwiGLU/RoPE/Transfor mer/1-1.4T tokens 1.1对transformer子层的输入归一化 对每个transformer子层的输入使用RMSNorm进行归一化&#xff0c;计算如下&#xff1a; 1.2使用SwiGLU替换ReLU 【Relu激活函数】Relu(x) max(0,x) 。 【GLU激…

nginx-反向代理缓存

反向代理缓存相当于自动化动静分离。 将上游服务器的资源缓存到nginx本地&#xff0c;当下次再有相同的资源请求时&#xff0c;直接讲nginx缓存的资源返回给客户端。 本地缓存资源有一个过期时间&#xff0c;当超过过期时间&#xff0c;则重新向上游服务器重新请求获取资源。…

书籍推荐-1 Python编程:从入门到实践(第2版)

Python编程&#xff1a;从入门到实践&#xff08;第2版&#xff09; 书籍背景 作者介绍 埃里克马瑟斯&#xff08;Eric Matthes&#xff09;&#xff0c;高中科学和数学老师&#xff0c;现居住在美国阿拉斯加&#xff0c;在当地讲授Python入门课程。他从5岁开始就一直在编写程序…

mysql:[Some non-transactional changed tables couldn‘t be rolled back]不支持事务

1. mysql创建表时默认引擎MyIsam&#xff0c;因此不支持事务的操作&#xff1b; 2. 修改mysql的默认引擎&#xff0c;可以使用show engine命令查看支持的引擎&#xff1a; 【my.conf详情说明】my.cnf配置文件注释详解_xiaolin01999的博客-CSDN博客 3. 原来使用MyIsam创建的表…