第63步 深度学习图像识别:多分类建模误判病例分析(Tensorflow)

news2024/10/6 14:34:00

基于WIN10的64位系统演示

一、写在前面

上两期我们基于TensorFlow和Pytorch环境做了图像识别的多分类任务建模。这一期我们做误判病例分析,分两节介绍,分别基于TensorFlow和Pytorch环境的建模和分析。

本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于TensorFlow环境,构建mobilenet_v2多分类模型,因为它建模速度快。

同样,基于GPT-4辅助编程,这次改写过程会简单展示。

二、误判病例分析实战

使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,健康人900张,肺结核病人700张,COVID-19病人549张、细菌性(病毒性)肺炎组900张,分别存入单独的文件夹中。

直接分享代码:

######################################导入包###################################
from tensorflow import keras
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Activation, Reshape, Softmax, GlobalAveragePooling2D, BatchNormalization
from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D
from tensorflow.python.keras import Sequential
from tensorflow.python.keras import Model
from tensorflow.python.keras.optimizers import adam_v2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, image_dataset_from_directory
from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomZoom, RandomTranslation
import os,PIL,pathlib
import warnings

#设置GPU
gpus = tf.config.list_physical_devices("GPU")

warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号

################################导入数据集#####################################
data_dir = "./MTB-1"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

batch_size = 32
img_height = 100
img_width  = 100

# 创建一个数据集,其中包含所有图像的路径。
list_ds = tf.data.Dataset.list_files(str(data_dir/'*/*'), shuffle=True)
# 切分为训练集和验证集
val_size = int(image_count * 0.2)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)

class_names = np.array(sorted([item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt"]))
print(class_names)

def get_label(file_path):
    parts = tf.strings.split(file_path, os.path.sep)
    one_hot = parts[-2] == class_names
    return tf.argmax(one_hot)

def decode_img(img):
    img = tf.image.decode_image(img, channels=3, expand_animations=False)  # 指定 channels 参数
    img = tf.image.resize(img, [img_height, img_width])
    img = img / 255.0  # normalize to [0,1] range
    return img


# 在创建数据集时,添加一个新的元素:数据集类型
def process_path_with_filename_and_dataset_type(file_path, dataset_type):
    label = get_label(file_path)
    img = tf.io.read_file(file_path)
    img = decode_img(img)
    return img, label, file_path, dataset_type

AUTOTUNE = tf.data.AUTOTUNE

# 在此处对train_ds和val_ds进行图像处理,包括添加文件名信息和数据集类型信息
train_ds_with_filenames_and_type = train_ds.map(lambda x: process_path_with_filename_and_dataset_type(x, 'Train'), num_parallel_calls=AUTOTUNE)
val_ds_with_filenames_and_type = val_ds.map(lambda x: process_path_with_filename_and_dataset_type(x, 'Val'), num_parallel_calls=AUTOTUNE)

# 合并训练集和验证集
all_ds_with_filenames_and_type = train_ds_with_filenames_and_type.concatenate(val_ds_with_filenames_and_type)

# 对训练数据集进行批处理和预加载
train_ds_with_filenames_and_type = train_ds_with_filenames_and_type.batch(batch_size)
train_ds_with_filenames_and_type = train_ds_with_filenames_and_type.prefetch(buffer_size=AUTOTUNE)

# 对验证数据集进行批处理和预加载
val_ds_with_filenames_and_type = val_ds_with_filenames_and_type.batch(batch_size)
val_ds_with_filenames_and_type = val_ds_with_filenames_and_type.prefetch(buffer_size=AUTOTUNE)

# 在进行模型训练时,不需要文件名和数据集类型信息,所以在此处移除
train_ds = train_ds_with_filenames_and_type.map(lambda x, y, z, t: (x, y))
val_ds = val_ds_with_filenames_and_type.map(lambda x, y, z, t: (x, y))

for image, label, path, dataset_type in train_ds_with_filenames_and_type.take(1):
    print("Image shape: ", image.numpy().shape)
    print("Label: ", label.numpy())
    print("Path: ", path.numpy())
    print("Dataset type: ", dataset_type.numpy())

train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels, paths, dataset_types in train_ds_with_filenames_and_type.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)
        plt.imshow(images[i].numpy())
        plt.xlabel(class_names[labels[i]])
plt.show()


######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5, 0.2),
  RandomTranslation(0.3, 0.5),
])

def prepare(ds, augment=False):
    ds = ds.map(lambda x, y, z, t: (data_augmentation(x, training=True), y, z, t) if augment else (x, y, z, t), 
                num_parallel_calls=AUTOTUNE)
    return ds

# 注意这里变量名的更改
train_ds_with_filenames_and_type = prepare(train_ds_with_filenames_and_type, augment=True)

# 在进行模型训练时,不需要文件名和数据集类型信息,所以在此处移除
train_ds = train_ds_with_filenames_and_type.map(lambda x, y, z, t: (x, y))
val_ds = val_ds_with_filenames_and_type.map(lambda x, y, z, t: (x, y))

train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)


###############################导入mobilenet_v2################################
#获取预训练模型对输入的预处理方法
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras import Input, regularizers
IMG_SIZE = (img_height, img_width, 3)

base_model = mobilenet_v2.MobileNetV2(input_shape=IMG_SIZE, 
                                      include_top=False, #是否包含顶层的全连接层
                                      weights='imagenet')

inputs = Input(shape=IMG_SIZE)
#模型
x = base_model(inputs, training=False) #参数不变化
#全局池化
x = GlobalAveragePooling2D()(x)
#BatchNormalization
x = BatchNormalization()(x)
#Dropout
x = Dropout(0.8)(x)
#Dense
x = Dense(128, kernel_regularizer=regularizers.l2(0.1))(x)  # 全连接层减少到128,添加 L2 正则化
#BatchNormalization
x = BatchNormalization()(x)
#激活函数
x = Activation('relu')(x)
#输出层
outputs = Dense(4, kernel_regularizer=regularizers.l2(0.1))(x)  # 添加 L2 正则化,改变输出层的神经元数量为4
#BatchNormalization
outputs = BatchNormalization()(outputs)
#激活函数
outputs = Activation('softmax')(outputs)  # 使用softmax激活函数,因为是多分类问题
#整体封装
model = Model(inputs, outputs)
#打印模型结构
print(model.summary())
#############################编译模型#########################################
#定义优化器
from tensorflow.python.keras.optimizers import adam_v2, rmsprop_v2

optimizer = adam_v2.Adam()


#编译模型
model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy',  # 因为是多分类问题,所以损失函数选择sparse_categorical_crossentropy
                metrics=['accuracy'])

#训练模型
from tensorflow.python.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 50
PATIENCE  = 10
VERBOSE   = 1

# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-5 * 0.99 ** (x+NO_EPOCHS))

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('mtb_jet_best_model_mobilenetv3samll-1.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)

train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer, annealer])

#保存模型
#model.save('mtb_jet_best_model_mobilenet-1.h5')
#print("The trained model has been saved.")


###########################误判病例分析#################################
import pandas as pd

# 提取图片的信息并预测
data_list = []
for image, label, path, dataset_type in all_ds_with_filenames_and_type:
    # 获取图片名称、类别信息
    path_parts = path.numpy().decode('utf-8').split('/')
    dataset_type = dataset_type.numpy().decode('utf-8')
    true_class = class_names[label.numpy()]
    image_name = path_parts[-1]

    # 使用模型预测图片的类别
    img_array = np.expand_dims(image, axis=0)
    predictions = model.predict(img_array)
    pred_class = class_names[np.argmax(predictions)]

    # 根据预测结果判断所属的组别
    if true_class == pred_class:
        group = 'A'
    elif true_class == 'COVID-19':
        if pred_class == 'Normal':
            group = 'B'
        elif pred_class == 'Pneumonia':
            group = 'C'
        elif pred_class == 'Tuberculosis':
            group = 'D'
    elif true_class == 'Normal':
        if pred_class == 'COVID-19':
            group = 'E'
        elif pred_class == 'Pneumonia':
            group = 'F'
        elif pred_class == 'Tuberculosis':
            group = 'G'
    elif true_class == 'Pneumonia':
        if pred_class == 'COVID-19':
            group = 'H'
        elif pred_class == 'Normal':
            group = 'I'
        elif pred_class == 'Tuberculosis':
            group = 'J'
    elif true_class == 'Tuberculosis':
        if pred_class == 'COVID-19':
            group = 'H'
        elif pred_class == 'Normal':
            group = 'I'
        elif pred_class == 'Pneumonia':
            group = 'J'

    # 保存图片的信息和预测结果
    data_list.append([image_name, dataset_type, pred_class, group])

# 将结果转化为DataFrame并保存为csv文件
result = pd.DataFrame(data_list, columns=["原始图片的名称", "属于训练集还是验证集", "预测为分组类型", "判定的组别"])
result.to_csv("result-m-t.csv", index=False)

三、改写过程

先说策略:首先,先把二分类的误判病例分析代码改成四分类的;其次,用咒语让GPT-4帮我们续写代码已达到误判病例分析。

策略的理由:之前介绍过,做误判病例分析是需要读取图片的路径信息。悲剧的是,我们之前在读取数据的时候使用的是“image_dataset_from_directory”函数,它不提供路径信息。因此,在二分类的误判病例分析的教程中,我们修改了数据读取的代码,因此,在此基础上进行修改,效率最高!

提供咒语如下:

①改写{代码1},改变成4分类的建模。代码1为:{XXX};

在{代码1}的基础上改写代码,达到下面要求:

(1)首先,提取出所有图片的“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”;文件的路劲格式为:例如,“MTB-1\Normal\XXX.png”属于Normal,“MTB-1\COVID-19\XXX.jpg”属于COVID-19,“MTB-1\Pneumonia\XXX.jpeg”属于Pneumonia,“MTB-1\Tuberculosis\XXX.png”属于Tuberculosis;

(2)其次,根据样本预测结果,把样本分为以下若干组:(a)预测正确的图片,全部判定为A组;(b)本来就是COVID-19的图片,预测为Normal,判定为B组;(c)本来就是COVID-19的图片,预测为Pneumonia,判定为C组;(d)本来就是COVID-19的图片,预测为Tuberculosis,判定为D组;(e)本来就是Normal的图片,预测为COVID-19,判定为E组;(f)本来就是Normal的图片,预测为Pneumonia,判定为F组;(g)本来就是Normal的图片,预测为Tuberculosis,判定为G组;(h)本来就是Pneumonia的图片,预测为COVID-19,判定为H组;(i)本来就是Pneumonia的图片,预测为Normal,判定为I组;(j)本来就是Pneumonia的图片,预测为Tuberculosis,判定为J组;(k)本来就是Tuberculosis的图片,预测为COVID-19,判定为H组;(l)本来就是Tuberculosis的图片,预测为Normal,判定为I组;(m)本来就是Tuberculosis的图片,预测为Pneumonia,判定为J组;

(3)居于以上计算的结果,生成一个名为result-m.csv表格文件。列名分别为:“原始图片的名称”、“属于训练集还是验证集”、“预测为分组类型”、“判定的组别”。其中,“原始图片的名称”为所有图片的图片名称;“属于训练集还是验证集”为这个图片属于训练集还是验证集;“预测为分组类型”为模型预测该样本是哪一个分组;“判定的组别”为根据步骤(2)判定的组别,从A到J一共十组选择一个。

(4)需要把所有的图片都进行上面操作,注意是所有图片,而不只是一个批次的图片。

代码1为:{XXX}

③还需要根据报错做一些调整即可,自行调整。

最后,看看结果:

四、数据

链接:https://pan.baidu.com/s/1rqu15KAUxjNBaWYfEmPwgQ?pwd=xfyn

提取码:xfyn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/957206.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Pytorch中如何加载数据、Tensorboard、Transforms的使用

一、Pytorch中如何加载数据 在Pytorch中涉及到如何读取数据,主要是两个类一个类是Dataset、Dataloader Dataset 提供一种方式获取数据,及其对应的label。主要包含以下两个功能: 如何获取每一个数据以及label 告诉我们总共有多少的数据 Datal…

终端登录github两种方式

第一种方式 添加token,Setting->Developer Setting 第二种方式SSH 用下面命令查看远程仓库格式 git remote -v 用下面命令更改远程仓库格式 git remote set-url origin gitgithub.com:用户名/仓库名.git 然后用下面命令生成新的SSH秘钥 ssh-keygen -t ed2…

Matlab图像处理-线性变换

线性变换 空间域处理技术是直接对图像的像素进行操作。灰度变换不改变原图像中像素的位置,只改变像素点的灰度值,并逐点进行,和周围的其他像素点无关。 灰度线性变换即是对图像的灰度做线性拉伸、压缩,映射函数为一个直线方程。…

【大数据】数据湖:下一代大数据的发展趋势

数据湖:下一代大数据的发展趋势 1.数据湖技术产生的背景1.1 离线大数据平台(第一代)1.2 Lambda 架构1.3 Lambda 架构的痛点1.4 Kappa 架构1.5 Kappa 架构的痛点1.6 大数据架构痛点总结1.7 实时数仓建设需求 2.数据湖助力于解决数据仓库痛点问…

137.只出现一次的数字

目录 一、题目 二、代码 一、题目 137. 只出现一次的数字 II - 力扣&#xff08;LeetCode&#xff09; 二、代码 class Solution { public:int singleNumber(vector<int>& nums) {int answer0;int count0;//用于计数for(int i0;i<32;i){count0;for(int j0;j&l…

Shell - 根据用户名查询该用户的相关信息

文章目录 #! /bin/bash # Function&#xff1a;根据用户名查询该用户的所有信息 read -p "请输入要查询的用户名&#xff1a;" A echo "------------------------------" ncat /etc/passwd | awk -F: $1~/^$A$/{print} | wc -l if [ $n -eq 0 ];then echo …

unity pivot and center

一般采用pivot即默认的模式 选中物体的轴心 Center中心 选中多个物体&#xff0c;两咱情况下旋转的效果也不一样 围绕各自中心旋转 Center 围绕中心旋转

K8s:一文认知 CRI,OCI,容器运行时,Pod 之间的关系

写在前面 博文内容整体结构为结合 华为云云原生课程 整理而来,部分内容做了补充课程是免费的&#xff0c;有华为云账户就可以看&#xff0c;适合理论认知&#xff0c;感觉很不错。有需要的小伙伴可以看看&#xff0c;链接在文末理解不足小伙伴帮忙指正 对每个人而言&#xff0c…

python 笔记(2)——文件、异常、面向对象、装饰器、json

目录 1、文件操作 1-1&#xff09;打开文件的两种方式&#xff1a; 1-2&#xff09;文件操作的简单示例&#xff1a; write方法: read方法&#xff1a; readline方法&#xff1a; readlines方法&#xff1a; 2、异常处理 2-1&#xff09;不会中断程序的异常捕获和处理…

在CentOS7中,安装并配置Redis【个人笔记】

一、拓展——Ubuntu上安装Redis 输入命令su --->切换到root用户【如果已经是&#xff0c;则不需要进行该操作】apt search redis --->使用apt命令来搜索redis相关的软件包【查询后&#xff0c;检查redis版本是否是你需要的&#xff0c;如果不是则需要看看其他资料~】ap…

QT可执行程序打包成安装程序

目录 1.将QT程序先放到一个文件中 2.下载QtInstallerFramework-win-x86.exe 3.将setup.exe单独拷贝出来&#xff0c;进行安装测试 4.测试安装后的程序是否可执行 1.将QT程序先放到一个文件中 &#xff08;1&#xff09;QT切换到release模式&#xff0c;编译后在构建目录生…

YOLOv5、YOLOv8改进:gnconv 门控递归卷积

1.简介 论文地址&#xff1a;https://arxiv.org/abs/2207.14284 代码地址&#xff1a;https://github.com/raoyongming/HorNet 视觉Transformer的最新进展表明&#xff0c;在基于点积自注意力的新空间建模机制驱动的各种任务中取得了巨大成功。在本文中&#xff0c;作者证明了…

【进程间通信】IPC对象(进程间通信的精髓)

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言&#xff0c;数据结构&#xff0c;Linux基础&#xff0c;ARM开发板&#xff0c;网络编程等领域UP&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff0…

2023年8月随笔之有顾忌了

1. 回头看 日更坚持了243天。 读《发布&#xff01;设计与部署稳定的分布式系统》终于更新完成 选读《SQL经典实例》也更新完成 读《高性能MySQL&#xff08;第4版&#xff09;》开更&#xff0c;但目前暂缓 读《SQL学习指南&#xff08;第3版&#xff09;》开更并持续更新…

3、QT 的基础控件的使用

一、qFileDialog 文件窗体 Header: #include <QFileDialog> qmake: QT widgets Inherits: QDialog静态函数接口&#xff1a; void Widget::on_pushButton_clicked() {//获取单个文件的路径名QString filename QFileDialog :: getOpenFileName(this, tr("Open Fi…

【taro react】(游戏) ---- 贪吃蛇

1. 预览 2. 实现思路 实现食物类&#xff0c;食物坐标和刷新食物的位置&#xff0c;以及获取食物的坐标点&#xff1b;实现计分面板类&#xff0c;实现吃食物每次的计分以及积累一定程度的等级&#xff0c;实现等级和分数的增加&#xff1b;实现蛇类&#xff0c;蛇类分为蛇头和…

16 Linux之JavaEE定制篇-搭建JavaEE环境

16 Linux之JavaEE定制篇-搭建JavaEE环境 文章目录 16 Linux之JavaEE定制篇-搭建JavaEE环境16.1 概述16.2 安装JDK16.3 安装tomcat16.4 安装idea2020*16.5 安装mysql5.7 学习视频来自于B站【小白入门 通俗易懂】2021韩顺平 一周学会Linux。可能会用到的资料有如下所示&#xff0…

Matlab图像处理-灰度插值法

最近邻法 最近邻法是一种最简单的插值算法&#xff0c;输出像素的值为输入图像中与其最邻近的采样点的像素值。是将(u0,v0)(u_0,v_0)点最近的整数坐标u,v(u,v)点的灰度值取为(u0,v0)(u_0,v_0)点的灰度值。 在(u0,v0)(u_0,v_0)点各相邻像素间灰度变化较小时&#xff0c;这种方…

使用ELK收集解析nginx日志和kibana可视化仪表盘

文章目录 ELK生产环境配置filebeat 配置logstash 配置 kibana仪表盘配置配置nginx转发ES和kibanaELK设置账号和密码 ELK生产环境配置 ELK收集nginx日志有多种方案&#xff0c;一般比较常见的做法是在生产环境服务器搭建filebeat 收集nginx的文件日志并写入到队列&#xff08;k…

图解 STP

网络环路 现在我们的生活已经离不开网络&#xff0c;如果我家断网&#xff0c;我会抱怨这什么破网络&#xff0c;影响到我刷抖音、打游戏&#xff1b;如果公司断网&#xff0c;那老板估计会骂娘&#xff0c;因为会影响到公司正常运转&#xff0c;直接造成经济损失。网络通信中&…