pandas数据分析之数据绘图

news2025/1/19 7:52:07

一图胜千言,将信息可视化(绘图)是数据分析中最重要的工作之一。它除了让人们对数据更加直观以外,还可以帮助我们找出异常值、必要的数据转换、得出有关模型的想法等等。pandas 在数据分析、数据可视化方面有着较为广泛的应用。本文将通过实例介绍pandas的数据绘图。

pandas的数据可视化依赖于matplotlib模块的pyplot类,matplotlib在安装Pandas会自动安装。Matplotlib可以对图形做细节控制,绘制出出版质量级别的图形,通过Matplotlib,可以简单地绘制出常用的统计图形。pandas 对 Matplotlib 绘图软件包的基础上单独封装了一个plot()接口,通过调用该接口可以实现常用的绘图操作。
让我们先来认识mataplotlib图形的基本构成。

一、matplotlib图形基本构成

1
2
3
4
import matplotlib.pyplot as plt
import numpy as np
data=np.arange(10)
plt.plot(data)

通过引入matplotlib模块的pyplot类,将数据传入plot()的接口,就可以将数据以图形化的方式展示出来。Matplotlib 生成的图形主要由以下几个部分构成:

  • Figure:指整个图形,您可以把它理解成一张画布,它包括了所有的元素,比如标题、轴线等;

  • Axes:绘制 2D图像的实际区域,也称为轴域区,或者绘图区;

  • Axis:指坐标系中的垂直轴与水平轴,包含轴的长度大小(图中轴长为 7)、轴标签(指 x轴,y轴)和刻度标签;

  • Artist:在画布上看到的所有元素都属于 Artist对象,比如文本对象(title、xlabel、ylabel)、Line2D 对象(用于绘制2D图像)等。

了解matplotlib图形的基本构成非常重要,绘图就是通过matplotlib提供的方法来定义和设置这些基本图形的构成元素来将数据显示在这些元素中。

二、matplotlib显示中文

Matplotlib 默认不支持中文字体,这因为 Matplotlib 只支持 ASCII 字符,但中文标注更加符合中国人的阅读习惯。下面介绍如何在 Windows 环境下让 Matplotlib 显示中文。

1、方法一:临时重写配置文件(临时)

通过临时重写配置文件的方法,可以解决 Matplotlib 显示中文乱码的问题,代码如下所示:

1
2
3
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"] #设置字体
plt.rcParams["axes.unicode_minus"]=False #该语句解决图像中的“-”负号的乱码问题

2、方法二:修改配置文件 (永久)

通过直接修改配置文件的方法,可以一劳永逸的解决 Matplotlib 的中文乱码问题。注意此过程在 Windows 环境下进行。
Matplotlib 从配置文件 matplotlibrc 中读取相关配置信息,比如字体、样式等,因此我们需要对该配置文件进行更改。使用如下代码查看 matplotlibrc 所在的目录:

1
2
import matplotlib
matplotlib.matplotlib_fname()

打开配置文件后,找到以下信息:
#font.family: sans-serif
#font.serif: DejaVu Serif, Bitstream Vera Serif, Computer Modern Roman, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
修改配置将#注释去掉,并将微软雅黑Microsoft YaHei的字体给加上。

最后,在windows的字体目录中复制中文字体微软雅黑:
C:\Windows\Fonts\Microsoft YaHei UI
将微软雅黑的字体复制粘贴到matplotlib的字体库中,字体库路径就在matplotlibrc 所在的目录下
D:\Anaconda3\Lib\site-packages\matplotlib\mpl-data\fonts\ttf

如果是jupyter notbook重启启动jupyter notbook让它重新读取配置文件即可。

三、pandas绘图

数据分析将数据进行可视化绘图展示离不开数据,pandas的两大数据结构Series和DataFrame都提供了相应的方法很方便的进行数据的可视化绘图展示。

1、数据

pandas 提供了 plot() 方法可以快速方便地将 Series 和 DataFrame 中的数据进行可视化。

a) Series

Series 使用 plot 时 x 轴为索引,y 轴为索引对应的具体值:

1
2
3
4
5
import numpy as np
import pandas as pd
series_data=pd.Series(np.random.randn(10),index=range(10))
series_data
series_data.plot()

b) DataFrame

DataFrame 使用 plot 时 x 轴为索引,y 轴为索引对应的多个具体值:

1
2
3
df_staff = pd.read_excel('D:\\Python\\study\\pythontest\\pandastest\\数据集\\staff_sale_byQ.xlsx')
df_staff
df_staff.plot()


plot()可以通过传入x和y指定显示具体的列数据

1
2
#指定X轴及y显示的列数据
df_staff.plot(x='季度',y=['张三','李四'])

2、图形

plot 默认为折线图,折线图也是最常用和最基础的可视化图形,足以满足我们日常 80% 的需求。
除了使用默认的线条绘图外,还可以使用其他绘图方式,如下所示:

  • 柱状图:bar() 或 barh()

  • 箱形图:box()

  • 区域图:area()

  • 饼状图:pie()

  • 散点图:scatter()

  • 直方图:hist()

a) 柱状图

柱状图(bar chart),使用与轴垂直的柱子,通过柱形的高低来表达数据的多少,适用于数据的对比,在整体中也能看到数据的发展变化趋势。
DataFrame 可以直接调用 plot.bar() 生成折线图,与折线图类似,x 轴为索引,其他数字类型的列为 y 轴上的条形,可以设置参数stacked=True生成柱状堆叠图
df.plot.bar()
df.plot.barh() # 横向
df[:5].plot.bar(x=’name’, y=’Q4’) # 指定xy轴
df[:5].plot.bar(‘name’, [‘Q1’, ‘Q2’]) # 指定xy轴

1
2
3
4
5
6
#柱状图
df_staff.plot.bar(x='季度',y=['张三','李四','王五'])
#柱状图可以设置参数stacked=True生成柱状堆叠图
df_staff.plot.bar(x='季度',y=['张三','李四','王五'],stacked=True)
#通过barh()方法可以绘制水平柱状图
df_staff.plot.barh(x='季度',y=['张三','李四','王五'],stacked=True)

b) 箱形图

箱形图(Box Chart)又称盒须图、盒式图或箱线图,是一种用作显示一组数据分布情况的统计图。Series.plot.box() 、 DataFrame.plot.box(), 和 DataFrame.boxplot() 都可以绘制箱形图。
从箱形图中我们可以观察到:

  • 一组数据的关键值:中位数、最大值、最小值等。

  • 数据集中是否存在异常值,以及异常值的具体数值。

  • 数据是否是对称的。

  • 这组数据的分布是否密集、集中。

  • 数据是否扭曲,即是否有偏向性。

1
df_staff.plot.box(x='季度',y=['张三','李四','王五'])

c) 区域图

区域图(Area Chart),又叫面积图。将折线图中折线与自变量坐标轴之间的区域使用颜色或者纹理填充,这样一个填充区域叫做面积,颜色的填充可以更好的突出趋势信息,需要注意的是颜色要带有一定的透明度,透明度可以很好的帮助使用者观察不同序列之间的重叠关系,没有透明度的面积会导致不同序列之间相互遮盖减少可以被观察到的信息。
面积图默认情况下是堆叠的。要生成堆积面积图,每列必须全部为正值或全部为负值。

1
df_staff.plot.area(x='季度',y=['张三','李四','王五'])

d) 饼状图

饼图(Pie Chart)广泛得应用在各个领域,用于表示不同分类的占比情况,通过弧度大小来对比各种分类。饼图通过将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个区块(圆弧)表示该分类占总体的比例大小,所有区块(圆弧)的加和等于 100%。
可以使用 DataFrame.plot.pie() 或 Series.plot.pie() 创建饼图

1
2
3
4
5
6
7
df_staff
#看张三每个季度的业绩分布
df_staff.plot.pie(y='张三',subplots=True)
#看第一个季度,每个人的绩效分布
df_staff1=df_staff.loc[0:0,'张三':'孙八'].T
df_staff1.columns=['Q']
df_staff1.plot.pie(y='Q',subplots=True)

e) 散点图

散点图(Scatter graph)也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。
通过观察散点图上数据点的分布情况,我们可以推断出变量间的相关性。如果变量之间不存在相互关系,那么在散点图上就会表现为随机分布的离散的点,如果存在某种相关性,那么大部分的数据点就会相对密集并以某种趋势呈现。

1
2
df1 = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"])
df1.plot.scatter(x="a", y="b");

f) 直方图

直方图(Histogram),又称质量分布图,是一种统计报告图,它是根据具体数据的分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图。

1
2
3
4
5
6
7
8
9
10
11
#构建数据集
df4=pd.DataFrame({
"a": np.random.randn(1000) + 1,
"b": np.random.randn(1000),
"c": np.random.randn(1000) - 1,
"d": np.random.randn(1000) - 2,
},columns=['a','b','c','d'])
df4
df4.plot.hist(alpha=0.5) #指定图形透明度
df4.plot.hist(stacked=True,bins=20) #堆叠并指定箱数为20
df4.diff().hist() #通过diff给每一列数据都绘制一个直方图

至此,本文介绍了pandas常用的绘图组件matplotlib,包括mataplotlib绘图的基本构成,如何在windows下解决中文问题,并通过实例介绍了如何通过pandas的数据集绘制折线图、箱线图、柱状图、饼图、面积图、散点图、直方图等。

参考资料:《利用python进行数据分析》、pandas官网 user guide

---------------------------END---------------------------

题外话

当下这个大数据时代不掌握一门编程语言怎么跟的上脚本呢?当下最火的编程语言Python前景一片光明!如果你也想跟上时代提升自己那么请看一下.

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/951547.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# 试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)

C# 在调用Cdll时,可能会出现 :试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)这个错误。 一般情况下是C#目标平台跟Cdll不兼容,64位跟32位兼容性问题, a.客户端调用Cdll报的错则, 1)允许的话把C#客户端…

SQL-basics

SQL 一些常用的查询语句用法 SQL 中的聚合函数 SQL 中的子查询 SQL 使用实例 SELECT F_NAME , L_NAME FROM EMPLOYEES WHERE ADDRESS LIKE ‘%Elgin,IL%’; SELECT F_NAME , L_NAME FROM EMPLOYEES WHERE B_DATE LIKE ‘197%’; SELECT * FROM EMPLOYEES WHERE (SALARY BET…

总结974

今日共计学习12h,日计划完成90%.今晚又把总结时间占用了,明天预留0.5h进行月总结吧,重新制定学习时间表,之前的已经用不了。 跟一个学府的老师聊了聊天,感觉聊完之后,本以为会心情舒畅,没想到反…

ELK安装、部署、调试(五)filebeat的安装与配置

1.介绍 logstash 也可以收集日志,但是数据量大时太消耗系统新能。而filebeat是轻量级的,占用系统资源极少。 Filebeat 由两个主要组件组成:harvester 和 prospector。 采集器 harvester 的主要职责是读取单个文件的内容。读取每个文件&…

同学,您有一张校招绿通卡请查收!

“金三银四”过去,马上“金九银十”了,有实习还没着落的,有在实习但留下成谜的,也有不顾其他只忙秋招的;还有依旧撒网投简历的;以及23 届还在找工作的。 小伙伴们,今年真的好难。 &#xff08…

SQLI-labs-第三关

目录 知识点:单括号)字符get注入 1、判断注入点: 2、判断当前表的字段数 3、判断回显位置 4、爆库名 5、爆表名 6、爆字段名,以users表为例 7、爆值 知识点:单括号)字符get注入 思路: 1、判断注入点&#xff1…

jmeter+nmon+crontab简单的执行接口定时压测

一、概述 临时接到任务要对系统的接口进行压测,上面的要求就是:压测,并发2000 在不熟悉系统的情况下,按目前的需求,需要做的步骤: 需要有接口脚本需要能监控系统性能需要能定时执行脚本 二、观察 >针…

springsecurity+oauth 分布式认证授权笔记总结12

一 springsecurity实现权限认证的笔记 1.1 springsecurity的作用 springsecurity两大核心功能是认证和授权,通过usernamepasswordAuthenticationFilter进行认证;通过filtersecurityintercepter进行授权。springsecurity其实多个filter过滤链进行过滤。…

STM32+RTThread配置以太网无法ping通,无法获取动态ip的问题

记录一个非常蠢的问题,今天在移植rtthread的以太网驱动的时候出现无法获取动态ip的问题,问题如下: 设置为动态ip时不管是连接路由器还是电脑主机都无法ping通,也无法获取dns地址。 设置为静态ip时无法ping通主机。 使用wireshark…

Xilinx-7系列之可配置逻辑块CLB

目录 一、概览 二、CLB结构 三、Slice内部结构 3.1 SliceM结构 3.2 SliceL结构 3.3 查找表LUT 3.4 多路复用器 3.5 存储单元 3.6 进位逻辑 四、应用 4.1 分布式RAM 4.2 ROM(只读存储器) 4.3 Shift Registers( 移位寄存器) 4.4 存储资源容量…

【【萌新的STM32学习23----数据通信的基本类型】】

萌新的STM32学习23----数据通信的基本类型 数据通信的基本概念 数据通信方式可以分为串行通信,并行通信 串行通信: 数据逐位按顺序依次传输 并行: 数据各位通过多条线同时传输 串行通信: 传输效率低,抗干扰能力强&am…

Milk-V Duo开发板实战——基于MobileNetV2的的图像分类

Milk-V Duo开发板实战——基于MobileNetV2的的图像分类 本教程介绍使用TPU-MLIR工具链对MobileNet-Caffe模型进行转换,生成MLIR以及MLIR量化成INT8模型,并在Milk-V Duo开发板上进行部署测试,完成图像分类任务,涉及以下步骤&#…

ELK安装、部署、调试(三)zookeeper安装,配置

1.准备 java安装,系统自带即可 2.下载zookeeper zookeeper.apache.org上可以下载 tar -zxvf apache-zookeeper-3.7.1-bin.tar.gz -C /usr/local mv apache-zookeeper-3.7.1-bin zookeeper 3.配置zookeeper mv zoo_sample.cfg zoo.cfg /usr/local/zookeeper/con…

界面控件Telerik UI for WPF——Windows 11主题精简模式提升应用体验

Telerik UI for WPF拥有超过100个控件来创建美观、高性能的桌面应用程序,同时还能快速构建企业级办公WPF应用程序。Telerik UI for WPF支持MVVM、触摸等,创建的应用程序可靠且结构良好,非常容易维护,其直观的API将无缝地集成Visua…

ASP.NET修改默认端口

找到发布目录下的appsettings.json文件 加入下面内容 "Kestrel":{"Endpoints": {"Https": {"Url": "https://*:8827"},"Http": {"Url": "http://*:8828"}}} 不使用https的话去掉https,修改…

24.动画魔术菜单指示器

效果 源码 <!DOCTYPE html> <html> <head> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Creative CSS Navigation Indicator</title> <link rel="stylesheet" hre…

Linux 内核动态打印调试(dev_info、 dev_dbg )

目录 前言 1 printk消息级别 2 调整内核printk打印级别 3 dev_xxx函数简介 4 配置内核使用动态打印 5 动态调试使用方法 6 动态打印调试的基本原理 &#x1f388;个人主页&#x1f388;&#xff1a;linux_嵌入式大师之路的博客-CSDN博客&#x1f389;&#x1f389;&…

中间件环境搭建配置过程解读

中间件环境搭建 目录 中间件环境搭建xampp 搭建环境Tomcat环境配置安装mysql连接mysql 问题解决 xampp 搭建环境 安装xampp服务集成环境工具 官网地址下载项目压缩包&#xff0c;将项目文件夹放在xampp安装目录的htdocs文件夹下初始化xampp&#xff1a;运行目录内的setup_xamp…

【java】【已解决】IDEA启动报错:Lombok Requires Annotation Processing

解决办法&#xff1a; 1、根据异常提示操作&#xff1a; 直接点击错误提示后面的蓝色标识【Enable】&#xff08;小编点完了所以变灰色&#xff09;&#xff0c;此操作等价于下面的步骤&#xff1a; 【File】-->【Settings】-->【Build】-->【Compiler】-->【Ann…

vue、uniapp如何在js中获取scss的变量

举例&#xff1a;在uniapp中会有一个uni.scss文件&#xff0c;我这边声明了一个$my-nav-bgColor的变量 uni.scss已经预处理过了&#xff0c;我们不需要引入可以直接使用 如果要在js中使用 需要在uni.scss中导出 在你要用的页面引入 就可以正常使用了 自己定义的scss文件…