【混合时变参数系统参数估计算法】使用范数总和正则化和期望最大化的混合时变参数系统参数估计算法(Matlab代码实现)

news2025/1/21 0:53:58

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

文献来源:

 本文解决了具有 eXogenous 输入 (SARX) 的开关仿射自回归模型的参数识别问题。该系统包括依赖于离散时变参数的连续域状态。此类系统的识别通常会导致非凸问题,这些问题可以作为混合整数程序来解决。然而,在这种情况下,计算复杂性在许多实际应用中将是难以解决的。另一种方法涉及启发式方法,以提供近似解决方案。本文提出了一种基于求解正则化凸优化问题的三步法,然后是聚类步骤,得到问题的部分解。当替换回原始问题时,部分解决方案使其凸起。最后,在第三步中解决该凸问题,得到一个近似解。研究发现,每一步都显著提高了所考虑系统的参数估计结果。该方法的一个有益特性是它只依赖于一个标量调谐参数,最终结果对该参数的敏感度不高。将该算法的性能与模拟系统上的其他方法进行比较,并在双氧细菌生长的实验生物学数据集中进行了说明。

SON-EM - 使用范数总和正则化和期望最大化的混合时变参数系统参数估计算法

混合时变参数系统参数估计算法是一种用于估计时变参数系统的参数的方法。该方法结合了范数总和正则化和期望最大化两种技术,以提高参数估计的准确性和稳定性。

范数总和正则化是一种常用的正则化技术,它通过在目标函数中引入参数的范数来约束参数的大小。范数总和正则化可以有效地控制参数的过拟合问题,提高参数估计的泛化能力。

期望最大化是一种常用的参数估计方法,它通过最大化观测数据的似然函数来估计参数。期望最大化方法可以有效地利用观测数据的信息,提高参数估计的准确性。

混合时变参数系统参数估计算法将范数总和正则化和期望最大化两种技术结合起来,以充分利用它们的优点。首先,通过引入范数总和正则化项,限制参数的大小,减小参数估计的方差,提高参数估计的稳定性。然后,通过期望最大化方法,最大化观测数据的似然函数,估计参数的最大可能值,提高参数估计的准确性。

具体而言,混合时变参数系统参数估计算法可以按照以下步骤进行:

1. 初始化参数估计值。可以使用一些启发式方法来初始化参数估计值,例如最小二乘法或随机初始化。

2. 根据当前参数估计值,计算目标函数。目标函数由观测数据的似然函数和范数总和正则化项组成。

3. 使用期望最大化方法,最大化目标函数。可以使用迭代优化算法,例如梯度下降法或牛顿法,来最大化目标函数。

4. 更新参数估计值。根据最大化目标函数的结果,更新参数估计值。

5. 重复步骤2至4,直到参数估计值收敛或达到最大迭代次数。

通过使用范数总和正则化和期望最大化的混合时变参数系统参数估计算法,可以提高参数估计的准确性和稳定性。该方法在估计时变参数系统的参数时具有广泛的应用前景,例如在信号处理、机器学习和控制系统等领域。

📚2 运行结果

 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

 [1]  Hartmann, A., Lemos, J. M., Costa, R. S., Xavier, J., & Vinga, S. (2015).
   Identification of Switched ARX Models via Convex Optimization and 
   Expectation Maximization. Journal of Process Control, (28), 9鈥16. 
   doi:10.1016/j.jprocont.2015.02.003
 

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/951033.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【洁洁送书第一期】Python高并发与高性能编程: 原理与实践

这里写目录标题 Python高并发、高性能解决问题书本介绍关于作者直播预告 Python高并发、高性能 Python成为时下技术革新的弄潮儿,全民Python的发展趋势让人们不再满足于简单地运行Python程序,逐步探索其更为广泛的日常应用和高性能设计。 以ChatGPT为代…

LeetCode-53-最大子数组和-贪心算法

贪心算法理论基础: 局部最优推全局最优 贪心无套路~ 没有什么规律~ 重点:每个阶段的局部最优是什么? 题目描述: 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素&#…

Running transaction check,yum卡在这个地方不动了

问题:运行yum update卡在这个地方不动 解决办法:运行下面的命令 # /bin/rm /var/lib/rpm/__db.* # cd /var/cache/yum # /bin/rm -rf * # yum clean all # yum update如果运行还不成功,那么重启服务器试试。我的服务器用了各种办法不行&…

金属矿山电子封条系统 yolov5

金属矿山电子封条通过pythonyolov5网络模型框架算法,金属矿山电子封条算法识别到运输设备启动运行或者识别到运输设备运行工作状态下有煤、无煤转换,进行预警分析,金属矿山电子封条算法利用智能化视频识别等技术,实时监测分析矿井出入井人员、…

机器学习技术(六)——有监督学习算法之线性回归算法实操

机器学习技术(五)——有监督学习之线性回归算法实操 引言: 机器学习监督算法是一种基于已有标记数据的学习方法,通过对已知输入和输出数据的学习,建立一个模型来预测新的输入数据的输出。这种算法模仿人类的学习过程&a…

抢跑预制菜,双汇发展转守为攻?

懒,懒出新风口,预制菜竟成了年轻人新时代的“田螺神话”? 《2022年中国预制菜产业发展白皮书》数据显示,2022年全国预制菜的市场规模是4196亿元人民币,到2026年可以突破万亿大关。 预制菜的火爆显而易见,…

ELK日志收集系统集群实验(5.5.0版)

目录 前言 一、概述 二、组件介绍 1、elasticsearch 2、logstash 3、kibana 三、架构类型 四、ELK日志收集集群实验 1、实验拓扑 2、在node1和node2节点安装elasticsearch 3、启动elasticsearch服务 4、在node1安装elasticsearch-head插件 5、测试输入 6、node1服…

【LeetCode题目详解】第八章 贪心算法 part06 738.单调递增的数字 968.监控二叉树 (day37补)

本文章代码以c为例&#xff01; 一、力扣第738题&#xff1a;单调递增的数字 题目&#xff1a; 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数…

嵌入式技术

嵌入式技术 嵌入式微处理器体系结构嵌入式微处理器分类多核处理器嵌入式软件嵌入式系统的组成嵌入式系统的特性 嵌入式技术和计算机网络 超纲的内容很多 这个课件只包含一半的分 其他的分看真题 嵌入式微处理器体系结构 将指令存储器和数据存储器合并在一起的结构 处于同一个存…

搭建一个你的文件共享站

说起文件共享&#xff0c;类似文件站这样的功能。在很久之前我使用过用apache httpd这个方案&#xff0c;这个的话就是太过于简单了。当然是满足需求的&#xff08;又不是不能用&#xff09; 今天来分享一个开源的文件共享平台。Pingvin Share 作者的github地址&#xff1a;ht…

面试了38位Java候选人之后,我总结出了他们关于面试中的16条通病

都说现在Java面试卷&#xff0c;前段时间项目招人的时候&#xff0c;我刚好就作为面试官面试了一些人 在整个面试的过程中&#xff0c;我就发现了一些关于面试的通病 所以呢&#xff0c;趁着这次金&#xff08;铜&#xff09;九银&#xff08;铁&#xff09;十的机会&#xf…

C++用于算法题中简化代码的冷门函数与类模板集合(持续更新中~)

1.accumulate ①求和&#xff1a; 第三个参数作为初始值&#xff0c;将区间[first, end)的值相加&#xff0c;返回初始值加上区间总和的值。 需要注意的是&#xff0c;如果总和超出区间中数的类型范围&#xff0c;可以将第三个参数强转成64位的long long类型 #include <iost…

CentOS 8 安装 Code Igniter 4

在安装好LNMP运行环境基础上&#xff0c;将codeigniter4文件夹移动到/var/nginx/html根目录下&#xff0c;浏览器地址栏输入IP/codeigniter/pulbic 一直提示&#xff1a; Cache unable to write to "/var/nginx/html/codeigniter/writable/cache/". 找了好久&…

企业数字化转型有没有通用的路径和准则?

数字化转型是利用数字技术从根本上改变企业运营方式并向客户提供价值的过程。它涉及将数字技术集成到组织活动的各个方面&#xff0c;从客户交互到内部流程。虽然数字化转型的具体方法可能会根据组织的目标、行业和现有基础设施而有所不同&#xff0c;但有一些通用路径和指南可…

异常的捕获和处理

目录 一、异常 1.异常概述 1.1认识异常 1.2Java异常体系结构 2.Java异常处理机制 2.1异常处理 2.2捕获异常 2.2.1使用try-catch捕获异常 2.2.2使用try-catch-finally处理异常 2.2.3使用多重catch处理异常 2.3抛出异常 2.3.1使用throws声明抛出异常 2.3.2使用throw…

小企业需不需要内部知识库?为什么都在倡导内部知识沉淀?

有多种方法可以提高员工敬业度和员工工作效率&#xff0c;从给予信任到创造积极的工作环境。但一还有一个不为人知但十分有效的方式——为员工创建良好的内部知识库。所以小企业同样需要内部知识库&#xff0c;以下是为什么倡导内部知识沉淀的理由&#xff1a; 知识积累与传承…

Http 1.0 1.1 2.0 3.0 版本差别

Http 1.0 发布年份&#xff1a;1996 非官方标准 短链接&#xff1a;每一次请求都对应一次TCP的连接与释放 开销大&#xff1a;每次请求都要TCP的连接与释放队头阻塞&#xff1a;每次请求都必须等上一次请求获得响应之后&#xff0c;才可以发送&#xff1b;效率低下 缓存&…

理论转换实践之keepalived+nginx实现HA

背景&#xff1a; keepalivednginx实现ha是网站和应用服务器常用的方法&#xff0c;之前项目中单独用nginx实现过负载均衡和服务转发&#xff0c;keepalived一直停留在理论节点&#xff0c;加之最近工作编写的一个技术文档用到keepalived&#xff0c;于是便有了下文。 服务组件…

Linux系统编程:线程同步及生产与消费者模型

目录 一. 线程同步的概念及功能 二. 线程同步的实现方法 2.1 条件变量相关函数 2.2 线程同步demo代码 三. 生成与消费者模型 3.1 生产与消费者模型的概念 3.2 生产与消费者模型实现代码 四. 总结 一. 线程同步的概念及功能 为了了解线程同步的概念及实现的功能&#xf…

Revit SDK:PointCurveCreation 创建点来拟合曲线

前言 这个例子通过留个例子来展示如何通过点来拟合曲线或者曲面。 内容 PointsParabola 生成抛物线的核心逻辑&#xff1a; double yctr 0; XYZ xyz null; ReferencePoint rp null; double power 1.2; while (power < 1.5){double xctr 0;double zctr 0;while (…