【LeetCode题目详解】第八章 贪心算法 part05 435. 无重叠区间 763.划分字母区间 56. 合并区间 (day36补)

news2025/1/11 17:14:48

本文章代码以c++为例!

一、力扣第435题:无重叠区间

题目:

给定一个区间的集合 intervals ,其中 intervals[i] = [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 

示例 1:

输入: intervals = [[1,2],[2,3],[3,4],[1,3]]
输出: 1
解释: 移除 [1,3] 后,剩下的区间没有重叠。

示例 2:

输入: intervals = [ [1,2], [1,2], [1,2] ]
输出: 2
解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。

示例 3:

输入: intervals = [ [1,2], [2,3] ]
输出: 0
解释: 你不需要移除任何区间,因为它们已经是无重叠的了。

提示:

  • 1 <= intervals.length <= 105
  • intervals[i].length == 2
  • -5 * 104 <= starti < endi <= 5 * 104

思路

相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?

其实都可以。主要就是为了让区间尽可能的重叠。

我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了

此时问题就是要求非交叉区间的最大个数。

这里记录非交叉区间的个数还是有技巧的,如图:

区间,1,2,3,4,5,6都按照右边界排好序。

当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?

就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。

接下来就是找大于区间1结束位置的区间,是从区间4开始。那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了

区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。

总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。

C++代码如下:

class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1];
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 1; // 记录非交叉区间的个数
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {
            if (end <= intervals[i][0]) {
                end = intervals[i][1];
                count++;
            }
        }
        return intervals.size() - count;
    }
};
  • 时间复杂度:O(nlog n) ,有一个快排
  • 空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

大家此时会发现如此复杂的一个问题,代码实现却这么简单!

# 补充

# 补充(1)

左边界排序可不可以呢?

也是可以的,只不过 左边界排序我们就是直接求 重叠的区间,count为记录重叠区间数。

class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {   
            if (intervals[i][0] >= end)  end = intervals[i][1]; // 无重叠的情况
            else { // 重叠情况 
                end = min(end, intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

其实代码还可以精简一下, 用 intervals[i][1] 替代 end变量,只判断 重叠情况就好

class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] < intervals[i - 1][1]) { //重叠情况
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

# 补充(2)

本题其实和452.用最少数量的箭引爆气球

(opens new window)非常像,弓箭的数量就相当于是非交叉区间的数量,只要把弓箭那道题目代码里射爆气球的判断条件加个等号(认为[0,1][1,2]不是相邻区间),然后用总区间数减去弓箭数量 就是要移除的区间数量了。

把452.用最少数量的箭引爆气球

(opens new window)代码稍做修改,就可以AC本题。

class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1]; // 右边界排序 
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] >= intervals[i - 1][1]) {
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
            }
        }
        return intervals.size() - result;
    }
};

这里按照 左边界排序,或者按照右边界排序,都可以AC,原理是一样的。

class Solution {
public:
    // 按照区间左边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] >= intervals[i - 1][1]) {
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
            }
        }
        return intervals.size() - result;
    }
};

二、力扣第763题:划分字母区间

题目:

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。

注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s

返回一个表示每个字符串片段的长度的列表。

示例 1:

输入:s = "ababcbacadefegdehijhklij"
输出:[9,7,8]
解释:
划分结果为 "ababcbaca"、"defegde"、"hijhklij" 。
每个字母最多出现在一个片段中。
像 "ababcbacadefegde", "hijhklij" 这样的划分是错误的,因为划分的片段数较少。 

示例 2:

输入:s = "eccbbbbdec"
输出:[10]

提示:

  • 1 <= s.length <= 500
  • s 仅由小写英文字母组成

思路

一想到分割字符串就想到了回溯,但本题其实不用回溯去暴力搜索。

题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?

如果没有接触过这种题目的话,还挺有难度的。

在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

如图:

763.划分字母区间

明白原理之后,代码并不复杂,如下:

class Solution {
public:
    vector<int> partitionLabels(string S) {
        int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
        for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
            hash[S[i] - 'a'] = i;
        }
        vector<int> result;
        int left = 0;
        int right = 0;
        for (int i = 0; i < S.size(); i++) {
            right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
            if (i == right) {
                result.push_back(right - left + 1);
                left = i + 1;
            }
        }
        return result;
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1),使用的hash数组是固定大小

# 总结

这道题目leetcode标记为贪心算法,说实话,我没有感受到贪心,找不出局部最优推出全局最优的过程。就是用最远出现距离模拟了圈字符的行为。

但这道题目的思路是很巧妙的,所以有必要介绍给大家做一做,感受一下。

# 补充

这里提供一种与452.用最少数量的箭引爆气球

(opens new window)、435.无重叠区间

(opens new window)相同的思路。

统计字符串中所有字符的起始和结束位置,记录这些区间(实际上也就是435.无重叠区间

(opens new window)题目里的输入),将区间按左边界从小到大排序,找到边界将区间划分成组,互不重叠。找到的边界就是答案。

class Solution {
public:
    static bool cmp(vector<int> &a, vector<int> &b) {
        return a[0] < b[0];
    }
    // 记录每个字母出现的区间
    vector<vector<int>> countLabels(string s) {
        vector<vector<int>> hash(26, vector<int>(2, INT_MIN));
        vector<vector<int>> hash_filter;
        for (int i = 0; i < s.size(); ++i) {
            if (hash[s[i] - 'a'][0] == INT_MIN) {
                hash[s[i] - 'a'][0] = i;
            }
            hash[s[i] - 'a'][1] = i;
        }
        // 去除字符串中未出现的字母所占用区间
        for (int i = 0; i < hash.size(); ++i) {
            if (hash[i][0] != INT_MIN) {
                hash_filter.push_back(hash[i]);
            }
        }
        return hash_filter;
    }
    vector<int> partitionLabels(string s) {
        vector<int> res;
        // 这一步得到的 hash 即为无重叠区间题意中的输入样例格式:区间列表
        // 只不过现在我们要求的是区间分割点
        vector<vector<int>> hash = countLabels(s);
        // 按照左边界从小到大排序
        sort(hash.begin(), hash.end(), cmp);
        // 记录最大右边界
        int rightBoard = hash[0][1];
        int leftBoard = 0;
        for (int i = 1; i < hash.size(); ++i) {
            // 由于字符串一定能分割,因此,
            // 一旦下一区间左边界大于当前右边界,即可认为出现分割点
            if (hash[i][0] > rightBoard) {
                res.push_back(rightBoard - leftBoard + 1);
                leftBoard = hash[i][0];
            }
            rightBoard = max(rightBoard, hash[i][1]);
        }
        // 最右端
        res.push_back(rightBoard - leftBoard + 1);
        return res;
    }
};

三、力扣第56题:合并区间

题目:

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。

示例 1:

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。

提示:

  • 1 <= intervals.length <= 104
  • intervals[i].length == 2
  • 0 <= starti <= endi <= 104

思路

本题的本质其实还是判断重叠区间问题。

大家如果认真做题的话,话发现和我们刚刚讲过的452. 用最少数量的箭引爆气球

(opens new window) 和 435. 无重叠区间

(opens new window) 都是一个套路。

这几道题都是判断区间重叠,区别就是判断区间重叠后的逻辑,本题是判断区间重贴后要进行区间合并。

所以一样的套路,先排序,让所有的相邻区间尽可能的重叠在一起,按左边界,或者右边界排序都可以,处理逻辑稍有不同。

按照左边界从小到大排序之后,如果 intervals[i][0] <= intervals[i - 1][1] 即intervals[i]的左边界 <= intervals[i - 1]的右边界,则一定有重叠。(本题相邻区间也算重贴,所以是<=)

这么说有点抽象,看图:(注意图中区间都是按照左边界排序之后了

56.合并区间

知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?

其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。

C++代码如下:

class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> result;
        if (intervals.size() == 0) return result; // 区间集合为空直接返回
        // 排序的参数使用了lambda表达式
        sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});

        // 第一个区间就可以放进结果集里,后面如果重叠,在result上直接合并
        result.push_back(intervals[0]); 

        for (int i = 1; i < intervals.size(); i++) {
            if (result.back()[1] >= intervals[i][0]) { // 发现重叠区间
                // 合并区间,只更新右边界就好,因为result.back()的左边界一定是最小值,因为我们按照左边界排序的
                result.back()[1] = max(result.back()[1], intervals[i][1]); 
            } else {
                result.push_back(intervals[i]); // 区间不重叠 
            }
        }
        return result;
    }
};
  • 时间复杂度: O(nlogn)
  • 空间复杂度: O(logn),排序需要的空间开销

day36补

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/945572.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringMVC-学习笔记

文章目录 1.概述1.1 SpringMVC快速入门 2. 请求2.1 加载控制2.2 请求的映射路径2.3 get和post请求发送2.4 五种请求参数种类2.5 传递JSON数据2.6 日期类型参数传递 3.响应3.1 响应格式 4.REST风格4.1 介绍4.2 RESTful快速入门4.3 简化操作 1.概述 SpringMVC是一个基于Java的Web…

day-04 基于UDP的服务器端/客户端

一.理解UDP &#xff08;一&#xff09;UDP套接字的特点 UDP套接字具有以下特点&#xff1a; 无连接性&#xff1a;UDP是一种无连接的协议&#xff0c;这意味着在发送数据之前&#xff0c;不需要在发送方和接收方之间建立连接。每个UDP数据包都是独立的&#xff0c;它们可以独…

【HSPCIE仿真】输入网表文件(4)常用分析

常用分析 1. 概述2. 直流初始化和工作点分析2.1 电路初始化(.ic)2.2 初始状态语句初始条件语句.IC 和.DCVOLT节点电压设置语句.NODESET 2.2 直流工作点分析(.op)基本语法示例 2.3 直流扫描分析 (.dc)基本语法示例 2.4 其他类型的直流分析 3. 瞬态分析(.TRAN)基本语法示例 4. 其…

CTFhub-文件上传-前端验证

burp 抓包 --> 重发--> 查看源代码 用 GodZilla 生成木马 文件名为 1.php.jsp 上传-->抓包-->改包 (删掉 .jpg) --> 点击 放行 木马文件位置为&#xff1a;http://challenge-f0531d0c27641130.sandbox.ctfhub.com:10800/upload/1.php 用 蚁剑连接 ctfhub{4743b…

【pyqt5界面化工具开发-7】窗口开发-菜单栏窗口QMainWindow

目录 0x00 前言&#xff1a; 一、调用父类的菜单 二、添加菜单内选项 0x00 前言&#xff1a; QWedget 控件和窗口的父类&#xff0c;自由度高(什么都东西都没有)&#xff0c;没有划分菜单、工具栏、状态栏、主窗口 等区域 QMainWindow 是 QWwidget 的子类&#xff0c;包含菜…

【AI】数学基础——高数(函数微分部分)

参考&#xff1a;https://www.bilibili.com/video/BV1mM411r7ko?p1&vd_source260d5bbbf395fd4a9b3e978c7abde437 唐宇迪&#xff1a;机器学习数学基础 文章目录 1.1 函数1.1.1 函数分类1.1.2 常见函数指/对数函数分段函数原函数&反函数sigmod函数Relu函数(非负函数)复…

dvwa文件上传通关及代码分析

文章目录 low等级medium等级high等级Impossible等级 low等级 查看源码&#xff1a; <?phpif( isset( $_POST[ Upload ] ) ) {// Where are we going to be writing to?$target_path DVWA_WEB_PAGE_TO_ROOT . "hackable/uploads/";$target_path . basename( …

uni-search-bar 实现搜索框自动获取焦点

<!-- 基本用法 --> <uni-search-bar confirm"search" input"input" ></uni-search-bar>查看源代码show:true, showSync&#xff1a;true, 都改为true 即可实现

The Cherno——OpenGL

The Cherno——OpenGL 1. 欢迎来到OpenGL OpenGL是一种跨平台的图形接口&#xff08;API&#xff09;&#xff0c;就是一大堆我们能够调用的函数去做一些与图像相关的事情。特殊的是&#xff0c;OpenGL允许我们访问GPU&#xff08;Graphics Processing Unit 图像处理单元&…

CTFHUB_web_密码口令_默认口令

登陆界面如图所示&#xff0c;题目提示默认口令&#xff1a; 查找常用默认口令&#xff1a; 常见web系统默认口令总结 常见网络安全设备弱口令(默认口令) 找到相关内容&#xff1a; 输入用户名密码得到flag

ChatGPT⼊门到精通(4):ChatGPT 为何⽜逼

⼀、通⽤型AI 在我们原始的幻想⾥&#xff0c;AI是基于对海量数据的学习&#xff0c;锻炼出⼀个⽆所不知⽆所不能的模 型&#xff0c;并借助计算机的优势&#xff08;计算速度、并发可能&#xff09;等碾压⼈类。 但我们⽬前的AI&#xff0c;不管是AlphaGo还是图像识别算法&am…

研华I/O板卡 Win10+Qt+Cmake 开发环境搭建

文章目录 一.研华I/O板卡 Win10QtCmake 开发环境搭建 一.研华I/O板卡 Win10QtCmake 开发环境搭建 参考这个链接安装研华I/O板卡驱动程序系统环境变量添加研华板卡dll Qt新建一个c项目 cmakeList.txt中添加研华库文件 cmake_minimum_required(VERSION 3.5)project(advantechDA…

LeetCode(力扣)617. 合并二叉树Python

LeetCode617. 合并二叉树 题目链接代码 题目链接 https://leetcode.cn/problems/merge-two-binary-trees/ 代码 递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # …

解决Three.js辉光背景不透明

使用此pass canvas元素的background都能看到 不过相应的辉光颜色和背景颜色不相容的地方看起来颜色会怪一些 如图 不过如果是纯色就没什么问题了 //ts-nocheck /** Author: hongbin* Date: 2023-04-06 11:44:14* LastEditors: hongbin* LastEditTime: 2023-04-06 11:49:23* De…

Node.js crypto模块 加密算法

背景 微信小程序调用飞蛾热敏纸打印机&#xff0c;需要进行参数sig签名校验&#xff0c;使用的是sha1进行加密 // 通过crypto.createHash()函数&#xff0c;创建一个hash实例&#xff0c;但是需要调用md5&#xff0c;sha1&#xff0c;sha256&#xff0c;sha512算法来实现实例的…

python-图片之乐-ASCII 文本图形

ASCII&#xff1a;一个简单的字符编码方案 pillow模块&#xff1a;读取图像&#xff0c;访问底层数据 numpy模块&#xff1a;计算平均值 import sys, random, argparse import numpy as np import math from PIL import Image定义灰度等级和网格 定义两种灰度等级作为全局值…

Git小白入门——了解分布式版本管理和安装

Git是什么&#xff1f; Git是目前世界上最先进的分布式版本控制系统&#xff08;没有之一&#xff09; 什么是版本控制系统&#xff1f; 程序员开发过程中&#xff0c;对于每次开发对各种文件的修改、增加、删除&#xff0c;达到预期阶段的一个快照就叫做一个版本。 如果有一…

EVO大赛是什么

价格是你所付出的东西&#xff0c;而价值是你得到的东西 EVO大赛是什么&#xff1f; “EVO”大赛全称“Evolution Championship Series”&#xff0c;是北美最高规格格斗游戏比赛&#xff0c;大赛正式更名后已经连续举办12年&#xff0c;是全世界最大规模的格斗游戏赛事。常见…

Python Qt学习(四)Radio Button

代码 # -*- coding: utf-8 -*-# Form implementation generated from reading ui file D:\Works\Python\Qt\qt_radiobutton.ui # # Created by: PyQt5 UI code generator 5.15.9 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again.…

2023年高教社杯 国赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…