【TI毫米波雷达笔记】毫米波雷达芯片out_of_box开箱demo代码解读(以IWR6843AOP为例)

news2025/1/16 7:46:54

【TI毫米波雷达笔记】毫米波雷达芯片out_of_box开箱demo代码解读

结构框架:

blog.csdn.net/weixin_53403301/article/details/132522364

在这里插入图片描述

功能

IWR6843AOP的开箱工程是根据IWR6843AOPEVM开发板来的
该工程可以将IWR6843AOP的两个串口利用起来 实现的功能主要是两个方面:
通过115200波特率的串口配置参数 建立握手协议
通过115200*8的串口输出雷达数据
此工程需要匹配TI官方的上位机:mmWave_Demo_Visualizer_3.6.0来使用
该上位机可以在连接串口后自动化操作 并且对雷达数据可视化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
关于雷达参数配置 则在SDK的mmw\profiles目录下
言简意赅 可以直接更改该目录下的文件参数来达到配置雷达参数的目的
在这里插入图片描述

但这种方法不利于直接更改 每次用上位机运行后的参数是固定的(上位机运行需要SDK环境) 所以也可以在代码中写死 本文探讨的就是这个方向

CCS工程导入

首先 在工业雷达包目录下找到该工程设置

C:\ti\mmwave_industrial_toolbox_4_12_0\labs\Out_Of_Box_Demo\src\xwr6843AOP

使用CCS的import project功能导入工程后 即可完成环境搭建
在这里插入图片描述
这里用到的SDK最新版为3.6版本

工程叙述

以下来自官方文档 可以直接跳过

Software Tasks

The demo consists of the following (SYSBIOS) tasks:

MmwDemo_initTask. This task is created/launched by main and is a one-time active task whose main functionality is to initialize drivers (<driver>_init), MMWave module (MMWave_init), DPM module (DPM_init), open UART and data path related drivers (EDMA, HWA), and create/launch the following tasks (the CLI_task is launched indirectly by calling CLI_open).
CLI_task. This command line interface task provides a simplified 'shell' interface which allows the configuration of the BSS via the mmWave interface (MMWave_config). It parses input CLI configuration commands like chirp profile and GUI configuration. When sensor start CLI command is parsed, all actions related to starting sensor and starting the processing the data path are taken. When sensor stop CLI command is parsed, all actions related to stopping the sensor and stopping the processing of the data path are taken
MmwDemo_mmWaveCtrlTask. This task is used to provide an execution context for the mmWave control, it calls in an endless loop the MMWave_execute API.
MmwDemo_DPC_ObjectDetection_dpmTask. This task is used to provide an execution context for DPM (Data Path Manager) execution, it calls in an endless loop the DPM_execute API. In this context, all of the registered object detection DPC (Data Path Chain) APIs like configuration, control and execute will take place. In this task. When the DPC's execute API produces the detected objects and other results, they are transmitted out of the UART port for display using the visualizer.

Data Path

在这里插入图片描述
Top Level Data Path Processing Chain
在这里插入图片描述
Top Level Data Path Timing

The data path processing consists of taking ADC samples as input and producing detected objects (point-cloud and other information) to be shipped out of UART port to the PC. The algorithm processing is realized using the DPM registered Object Detection DPC. The details of the processing in DPC can be seen from the following doxygen documentation:
ti/datapath/dpc/objectdetection/objdethwa/docs/doxygen/html/index.html

Output information sent to host

Output packets with the detection information are sent out every frame through the UART. Each packet consists of the header MmwDemo_output_message_header_t and the number of TLV items containing various data information with types enumerated in MmwDemo_output_message_type_e. The numerical values of the types can be found in mmw_output.h. Each TLV item consists of type, length (MmwDemo_output_message_tl_t) and payload information. The structure of the output packet is illustrated in the following figure. Since the length of the packet depends on the number of detected objects it can vary from frame to frame. The end of the packet is padded so that the total packet length is always multiple of 32 Bytes.

在这里插入图片描述
Output packet structure sent to UART
The following subsections describe the structure of each TLV.

List of detected objects

Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS)

Length: (Number of detected objects) x (size of DPIF_PointCloudCartesian_t)

Value: Array of detected objects. The information of each detected object is as per the structure DPIF_PointCloudCartesian_t. When the number of detected objects is zero, this TLV item is not sent. The maximum number of objects that can be detected in a sub-frame/frame is DPC_OBJDET_MAX_NUM_OBJECTS.

The orientation of x,y and z axes relative to the sensor is as per the following figure. (Note: The antenna arrangement in the figure is shown for standard EVM (see gAntDef_default) as an example but the figure is applicable for any antenna arrangement.)

在这里插入图片描述
Coordinate Geometry
The whole detected objects TLV structure is illustrated in figure below.
在这里插入图片描述
Detected objects TLV

Range profile

Type: (MMWDEMO_OUTPUT_MSG_RANGE_PROFILE)

Length: (Range FFT size) x (size of uint16_t)

Value: Array of profile points at 0th Doppler (stationary objects). The points represent the sum of log2 magnitudes of received antennas expressed in Q9 format.

Noise floor profile
Type: (MMWDEMO_OUTPUT_MSG_NOISE_PROFILE)

Length: (Range FFT size) x (size of uint16_t)

Value: This is the same format as range profile but the profile is at the maximum Doppler bin (maximum speed objects). In general for stationary scene, there would be no objects or clutter at maximum speed so the range profile at such speed represents the receiver noise floor.

Azimuth static heatmap

Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_STATIC_HEAT_MAP)

Length: (Range FFT size) x (Number of "azimuth" virtual antennas) (size of cmplx16ImRe_t_)

Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)
         ...
         Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the number of “azimuth” virtual antennas. The antenna symbols are arranged in the order as they occur at the input to azimuth FFT. Based on this data the static azimuth heat map could be constructed by the GUI running on the host.

Azimuth/Elevation static heatmap

Type: (MMWDEMO_OUTPUT_MSG_AZIMUT_ELEVATION_STATIC_HEAT_MAP)

Length: (Range FFT size) x (Number of all virtual antennas) (size of cmplx16ImRe_t_)

Value: Array DPU_AoAProcHWA_HW_Resources::azimuthStaticHeatMap. The antenna data are complex symbols, with imaginary first and real second in the following order:
 Imag(ant 0, range 0), Real(ant 0, range 0),...,Imag(ant N-1, range 0),Real(ant N-1, range 0)
         ...
         Imag(ant 0, range R-1), Real(ant 0, range R-1),...,Imag(ant N-1, range R-1),Real(ant N-1, range R-1)

Note that the number of virtual antennas is equal to the total number of active virtual antennas. The antenna symbols are arranged in the order as they occur in the radar cube matrix. This TLV is sent by AOP version of MMW demo, that uses AOA2D DPU. Based on this data the static azimuth or elevation heat map could be constructed by the GUI running on the host.

Range/Doppler heatmap

Type: (MMWDEMO_OUTPUT_MSG_RANGE_DOPPLER_HEAT_MAP)

Length: (Range FFT size) x (Doppler FFT size) (size of uint16_t)

Value: Detection matrix DPIF_DetMatrix::data. The order is :
 X(range bin 0, Doppler bin 0),...,X(range bin 0, Doppler bin D-1),
        ...
        X(range bin R-1, Doppler bin 0),...,X(range bin R-1, Doppler bin D-1)

Stats information

Type: (MMWDEMO_OUTPUT_MSG_STATS )

Length: (size of MmwDemo_output_message_stats_t)

Value: Timing information as per MmwDemo_output_message_stats_t. See timing diagram below related to the stats.

在这里插入图片描述
Processing timing

Note:

The MmwDemo_output_message_stats_t::interChirpProcessingMargin is not computed (it is always set to 0). This is because there is no CPU involvement in the 1D processing (only HWA and EDMA are involved), and it is not possible to know how much margin is there in chirp processing without CPU being notified at every chirp when processing begins (chirp event) and when the HWA-EDMA computation ends. The CPU is intentionally kept free during 1D processing because a real application may use this time for doing some post-processing algorithm execution.
While the MmwDemo_output_message_stats_t::interFrameProcessingTime reported will be of the current sub-frame/frame, the MmwDemo_output_message_stats_t::interFrameProcessingMargin and MmwDemo_output_message_stats_t::transmitOutputTime will be of the previous sub-frame (of the same MmwDemo_output_message_header_t::subFrameNumber as that of the current sub-frame) or of the previous frame.
The MmwDemo_output_message_stats_t::interFrameProcessingMargin excludes the UART transmission time (available as MmwDemo_output_message_stats_t::transmitOutputTime). This is done intentionally to inform the user of a genuine inter-frame processing margin without being influenced by a slow transport like UART, this transport time can be significantly longer for example when streaming out debug information like heat maps. Also, in a real product deployment, higher speed interfaces (e.g LVDS) are likely to be used instead of UART. User can calculate the margin that includes transport overhead (say to determine the max frame rate that a particular demo configuration will allow) using the stats because they also contain the UART transmission time.

The CLI command “guMonitor” specifies which TLV element will be sent out within the output packet. The arguments of the CLI command are stored in the structure MmwDemo_GuiMonSel_t.

Side information of detected objects

Type: (MMWDEMO_OUTPUT_MSG_DETECTED_POINTS_SIDE_INFO)

Length: (Number of detected objects) x (size of DPIF_PointCloudSideInfo_t)

Value: Array of detected objects side information. The side information of each detected object is as per the structure DPIF_PointCloudSideInfo_t). When the number of detected objects is zero, this TLV item is not sent.

Temperature Stats

Type: (MMWDEMO_OUTPUT_MSG_TEMPERATURE_STATS)

Length: (size of MmwDemo_temperatureStats_t)

Value: Structure of detailed temperature report as obtained from Radar front end. MmwDemo_temperatureStats_t::tempReportValid is set to return value of rlRfGetTemperatureReport. If MmwDemo_temperatureStats_t::tempReportValid is 0, values in MmwDemo_temperatureStats_t::temperatureReport are valid else they should be ignored. This TLV is sent along with Stats TLV described in Stats information

Range Bias and Rx Channel Gain/Phase Measurement and Compensation

Because of imperfections in antenna layouts on the board, RF delays in SOC, etc, there is need to calibrate the sensor to compensate for bias in the range estimation and receive channel gain and phase imperfections. The following figure illustrates the calibration procedure.

在这里插入图片描述
Calibration procedure ladder diagram

The calibration procedure includes the following steps:

Set a strong target like corner reflector at the distance of X meter (X less than 50 cm is not recommended) at boresight.
Set the following command in the configuration profile in .../profiles/profile_calibration.cfg, to reflect the position X as follows: where D (in meters) is the distance of window around X where the peak will be searched. The purpose of the search window is to allow the test environment from not being overly constrained say because it may not be possible to clear it of all reflectors that may be stronger than the one used for calibration. The window size is recommended to be at least the distance equivalent of a few range bins. One range bin for the calibration profile (profile_calibration.cfg) is about 5 cm. The first argument "1" is to enable the measurement. The stated configuration profile (.cfg) must be used otherwise the calibration may not work as expected (this profile ensures all transmit and receive antennas are engaged among other things needed for calibration).
   measureRangeBiasAndRxChanPhase 1 X D
Start the sensor with the configuration file.
In the configuration file, the measurement is enabled because of which the DPC will be configured to perform the measurement and generate the measurement result (DPU_AoAProc_compRxChannelBiasCfg_t) in its result structure (DPC_ObjectDetection_ExecuteResult_t::compRxChanBiasMeasurement), the measurement results are written out on the CLI port (MmwDemo_measurementResultOutput) in the format below: For details of how DPC performs the measurement, see the DPC documentation.
   compRangeBiasAndRxChanPhase <rangeBias> <Re(0,0)> <Im(0,0)> <Re(0,1)> <Im(0,1)> ... <Re(0,R-1)> <Im(0,R-1)> <Re(1,0)> <Im(1,0)> ... <Re(T-1,R-1)> <Im(T-1,R-1)>
The command printed out on the CLI now can be copied and pasted in any configuration file for correction purposes. This configuration will be passed to the DPC for the purpose of applying compensation during angle computation, the details of this can be seen in the DPC documentation. If compensation is not desired, the following command should be given (depending on the EVM and antenna arrangement) Above sets the range bias to 0 and the phase coefficients to unity so that there is no correction. Note the two commands must always be given in any configuration file, typically the measure commmand will be disabled when the correction command is the desired one.
   For ISK EVM:
   compRangeBiasAndRxChanPhase 0.0   1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
   For AOP EVM
   compRangeBiasAndRxChanPhase 0.0   1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 

Streaming data over LVDS

The LVDS streaming feature enables the streaming of HW data (a combination of ADC/CP/CQ data) and/or user specific SW data through LVDS interface. The streaming is done mostly by the CBUFF and EDMA peripherals with minimal CPU intervention. The streaming is configured through the MmwDemo_LvdsStreamCfg_t CLI command which allows control of HSI header, enable/disable of HW and SW data and data format choice for the HW data. The choices for data formats for HW data are:

MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_DISABLED
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_ADC
MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ
In order to see the high-level data format details corresponding to the above data format configurations, refer to the corresponding slides in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx

When HW data LVDS streaming is enabled, the ADC/CP/CQ data is streamed per chirp on every chirp event. When SW data streaming is enabled, it is streamed during inter-frame period after the list of detected objects for that frame is computed. The SW data streamed every frame/sub-frame is composed of the following in time:

HSI header (HSIHeader_t): refer to HSI module for details.
User data header: MmwDemo_LVDSUserDataHeader
User data payloads:
Point-cloud information as a list : DPIF_PointCloudCartesian_t x number of detected objects
Point-cloud side information as a list : DPIF_PointCloudSideInfo_t x number of detected objects

The format of the SW data streamed is shown in the following figure:
在这里插入图片描述
LVDS SW Data format

Note:

Only single-chirp formats are allowed, multi-chirp is not supported.
When number of objects detected in frame/sub-frame is 0, there is no transmission beyond the user data header.
For HW data, the inter-chirp duration should be sufficient to stream out the desired amount of data. For example, if the HW data-format is ADC and HSI header is enabled, then the total amount of data generated per chirp is:
(numAdcSamples * numRxChannels * 4 (size of complex sample) + 52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] ) rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
The chirp time Tc in us = idle time + ramp end time in the profile configuration. For n-lane LVDS with each lane at a maximum of B Mbps,
maximum number of bytes that can be send per chirp = Tc * n * B / 8 which should be greater than the total amount of data generated per chirp i.e
Tc * n * B / 8 >= round-up(numAdcSamples * numRxChannels * 4 + 52, 256).
E.g if n = 2, B = 600 Mbps, idle time = 7 us, ramp end time = 44 us, numAdcSamples = 512, numRxChannels = 4, then 7650 >= 8448 is violated so this configuration will not work. If the idle-time is doubled in the above example, then we have 8700 > 8448, so this configuration will work.
For SW data, the number of bytes to transmit each sub-frame/frame is:
52 [sizeof(HSIDataCardHeader_t) + sizeof(HSISDKHeader_t)] + sizeof(MmwDemo_LVDSUserDataHeader_t) [=8] +
number of detected objects (Nd) * { sizeof(DPIF_PointCloudCartesian_t) [=16] + sizeof(DPIF_PointCloudSideInfo_t) [=4] } rounded up to multiples of 256 [=sizeof(HSIHeader_t)] bytes.
or X = round-up(60 + Nd * 20, 256). So the time to transmit this data will be
X * 8 / (n*B) us. The maximum number of objects (Ndmax) that can be detected is defined in the DPC (DPC_OBJDET_MAX_NUM_OBJECTS). So if Ndmax = 500, then time to transmit SW data is 68 us. Because we parallelize this transmission with the much slower UART transmission, and because UART transmission is also sending at least the same amount of information as the LVDS, the LVDS transmission time will not add any burdens on the processing budget beyond the overhead of reconfiguring and activating the CBUFF session (this overhead is likely bigger than the time to transmit).
The total amount of data to be transmitted in a HW or SW packet must be greater than the minimum required by CBUFF, which is 64 bytes or 32 CBUFF Units (this is the definition CBUFF_MIN_TRANSFER_SIZE_CBUFF_UNITS in the CBUFF driver implementation). If this threshold condition is violated, the CBUFF driver will return an error during configuration and the demo will generate a fatal exception as a result. When HSI header is enabled, the total transfer size is ensured to be at least 256 bytes, which satisfies the minimum. If HSI header is disabled, for the HW session, this means that numAdcSamples * numRxChannels * 4 >= 64. Although mmwavelink allows minimum number of ADC samples to be 2, the demo is supported for numAdcSamples >= 64. So HSI header is not required to be enabled for HW only case. But if SW session is enabled, without the HSI header, the bytes in each packet will be 8 + Nd * 20. So for frames/sub-frames where Nd < 3, the demo will generate exception. Therefore HSI header must be enabled if SW is enabled, this is checked in the CLI command validation.

Implementation Notes

The LVDS implementation is mostly present in mmw_lvds_stream.h and mmw_lvds_stream.c with calls in mss_main.c. Additionally HSI clock initialization is done at first time sensor start using MmwDemo_mssSetHsiClk.
EDMA channel resources for CBUFF/LVDS are in the global resource file (mmw_res.h, see Hardware Resource Allocation) along with other EDMA resource allocation. The user data header and two user payloads are configured as three user buffers in the CBUFF driver. Hence SW allocation for EDMA provides for three sets of EDMA resources as seen in the SW part (swSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit. The maximum number of HW EDMA resources are needed for the data-format MMW_DEMO_LVDS_STREAM_CFG_DATAFMT_CP_ADC_CQ, which as seen in the corresponding slide in ti\drivers\cbuff\docs\CBUFF_Transfers.pptx is 12 channels (+ shadows) including the 1st special CBUFF EDMA event channel which CBUFF IP generates to the EDMA, hence the HW part (hwwSessionEDMAChannelTable[.]) of MmwDemo_LVDSStream_EDMAInit has 11 table entries.
Although the CBUFF driver is configured for two sessions (hw and sw), at any time only one can be active. So depending on the LVDS CLI configuration and whether advanced frame or not, there is logic to activate/deactivate HW and SW sessions as necessary.
The CBUFF session (HW/SW) configure-create and delete depends on whether or not re-configuration is required after the first time configuration.
For HW session, re-configuration is done during sub-frame switching to re-configure for the next sub-frame but when there is no advanced frame (number of sub-frames = 1), the HW configuration does not need to change so HW session does not need to be re-created.
For SW session, even though the user buffer start addresses and sizes of headers remains same, the number of detected objects which determines the sizes of some user buffers changes from one sub-frame/frame to another sub-frame/frame. Therefore SW session needs to be recreated every sub-frame/frame.
User may modify the application software to transmit different information than point-cloud in the SW data e.g radar cube data (output of range DPU). However the CBUFF also has a maximum link list entry size limit of 0x3FFF CBUFF units or 32766 bytes. This means it is the limit for each user buffer entry [there are maximum of 3 entries -1st used for user data header, 2nd for point-cloud and 3rd for point-cloud side information]. During session creation, if this limit is exceeded, the CBUFF will return an error (and demo will in turn generate an exception). A single physical buffer of say size 50000 bytes may be split across two user buffers by providing one user buffer with (address, size) = (start address, 25000) and 2nd user buffer with (address, size) = (start address + 25000, 25000), beyond this two (or three if user data header is also replaced) limit, the user will need to create and activate (and wait for completion) the SW session multiple times to accomplish the transmission.

The following figure shows a timing diagram for the LVDS streaming (the figure is not to scale as actual durations will vary based on configuration).
在这里插入图片描述

How to bypass CLI

Re-implement the file mmw_cli.c as follows:

MmwDemo_CLIInit should just create a task with input taskPriority. Lets say the task is called "MmwDemo_sensorConfig_task".
All other functions are not needed
Implement the MmwDemo_sensorConfig_task as follows:
Fill gMmwMCB.cfg.openCfg
Fill gMmwMCB.cfg.ctrlCfg
Add profiles and chirps using MMWave_addProfile and MMWave_addChirp functions
Call MmwDemo_CfgUpdate for every offset in Offsets for storing CLI configuration (MMWDEMO_xxx_OFFSET in mmw.h)
Fill gMmwMCB.dataPathObj.objDetCommonCfg.preStartCommonCfg
Call MmwDemo_openSensor
Call MmwDemo_startSensor (One can use helper function MmwDemo_isAllCfgInPendingState to know if all dynamic config was provided)

Hardware Resource Allocation

The Object Detection DPC needs to configure the DPUs hardware resources (HWA, EDMA). Even though the hardware resources currently are only required to be allocated for this one and only DPC in the system, the resource partitioning is shown to be in the ownership of the demo. This is to illustrate the general case of resource allocation across more than one DPCs and/or demo's own processing that is post-DPC processing. This partitioning can be seen in the mmw_res.h file. This file is passed as a compiler command line define
"--define=APP_RESOURCE_FILE="<ti/demo/xwr64xx/mmw/mmw_res.h>" 

in mmw.mak when building the DPC sources as part of building the demo application and is referred in object detection DPC sources where needed as

#include APP_RESOURCE_FILE 

代码解读

这里我将从main函数、三个主要线程、一个次要线程来叙述整体代码结构:

  1. main函数:初始化SOC 上电BSS 创建初始化线程。
  2. MmwDemo_initTask:主要线程,此任务由 main 创建/启动,是一次性活动任务,其主要功能是初始化驱动程序(<驱动程序>_init)、MMWave 模块 (MMWave_init)、DPM 模块 (DPM_init)、打开 UART 和数据路径相关的驱动程序(EDMA、HWA),并创建/启动以下任务(CLI_task通过调用 CLI_open 间接启动)。
  3. CLI_task:主要线程,此命令行界面任务提供了一个简化的“shell”界面,允许通过毫米波接口(MMWave_config)配置BSS。它解析输入 CLI 配置命令,如线性调频配置文件和 GUI 配置。解析传感器启动 CLI 命令时,将执行与启动传感器和启动处理数据路径相关的所有操作。解析传感器停止 CLI 命令时,将执行与停止传感器和停止数据路径处理相关的所有操作
  4. MmwDemo_mmWaveCtrlTask:次要线程,此任务用于为毫米波控制提供执行上下文,它在无限循环中调用MMWave_execute API。
  5. MmwDemo_DPC_ObjectDetection_dpmTask:主要线程,此任务用于为 DPM(数据路径管理器)执行提供执行上下文,它在无限循环中调用 DPM_execute API。在此上下文中,将发生所有注册对象检测 DPC(数据路径链)API,如配置、控制和执行。在此任务中。当DPC的执行API生成检测到的对象和其他结果时,它们将从UART端口传输出去,以便使用可视化工具进行显示。

配置说明

TI官方的代码有个特点 所有的handle句柄、配置参数都会放在一个全局变量结构体里 在这个工程下为gMmwMCB
而配置流程也是先将参数写入到结构体里 然后再把结构体的参数传到各个配置函数
比如以下两个函数:

/* Platform specific configuration */
MmwDemo_platformInit(&gMmwMCB.cfg.platformCfg);

/* Initialize the Data Path: */
MmwDemo_dataPathInit(&gMmwMCB.dataPathObj);

串口的配置参数就在第一个函数内写入
然后再调用UART_open

/* Setup the default UART Parameters */
UART_Params_init(&uartParams);
uartParams.clockFrequency = gMmwMCB.cfg.platformCfg.sysClockFrequency;
uartParams.baudRate       = gMmwMCB.cfg.platformCfg.commandBaudRate;
uartParams.isPinMuxDone   = 1;

/* Open the UART Instance */
gMmwMCB.commandUartHandle = UART_open(0, &uartParams);

主要名词

MMWave

毫米波雷达外设(BSS) 配套使用的控制外设为MMWaveLink

Mailbox

邮箱 用于BSS和MSS、DSS之间的通信 主要是起到传递雷达数据和参数的作用

ADCBuf

原始雷达数据(ADC采样数据)控制外设

Common Buffer Controller (CBUFF Driver)

CBUFF(通用缓冲控制器)负责将数据从多个来源(如ADCBUFF、线性调频参数(CP)、线性调频质量(CQ)或任何其他来源)传输到LVDS Tx或CSI2模块。

Data Path Manager (DPM)

DPM 模块提供定义完善的 IPC 机制,允许应用程序和数据路径处理链 (DPC) 相互通信。应用程序和 DPC 可以位于同一子系统上,也可以位于不同的子系统上。

LVDS Stream

低电压差分信号流
该部分是demo代码里面的一种信号处理解决方案 不属于芯片外设资源

DPC

数据路径处理

Cycleprofiler

用于获取时间戳等

Enhanced DMA (EDMA)

增强型DMA 用于数据移动处理

HWA

硬件加速器 用于硬件计算等

main函数

初始化SOC 这是一套标准流程 同时上电BSS

SOC_waitBSSPowerUp(socHandle, &errCode)

然后建立MmwDemo_initTask主线程

Task_create(MmwDemo_initTask, &taskParams, NULL);

MmwDemo_mmWaveCtrlTask

在初始化毫米波雷达中 打开毫米波雷达 并执行同步后调用:
需要在调用MMWave_initMMWave_sync后启用
该线程一直循环调用MMWave_execute函数
用于在毫米波上下文中调用 说白了就是固定用法

while (1)
{
    /* Execute the mmWave control module: */
    if (MMWave_execute (gMmwMCB.ctrlHandle, &errCode) < 0)
    {
    }
}

主要线程中最先被调用的是MmwDemo_initTask 其承担了主要的初始化任务

MmwDemo_initTask

GPIO、UART、BSS上电

首先

UART_init();
GPIO_init();
Mailbox_init(MAILBOX_TYPE_MSS);

这三个最重要的函数 必须提前调用
前两个就不说了了 Mailbox_init也是BSS上电函数 如果不调用 则MMWave_init会报错

引脚复用

然后是Pinmux引脚复用和UART配置

MmwDemo_platformInit(&gMmwMCB.cfg.platformCfg);

两个UART分别是115200和115200*8的波特率
采用UART_open对两个串口进行打开,编号为0和1

HWA、EDMA上电

函数MmwDemo_dataPathInit(&gMmwMCB.dataPathObj);初始化了HWA和EDMA(仅仅是上电,不是配置 类似UART_init();
这类上电函数要在外设配置函数之前就要被调用 同样类似的还有ADCBuf_init

雷达上层初始化

调用MMWave_initMMWave_sync函数
全运行MSS独立模式
回调函数:MmwDemo_eventCallbackFxn
同时打开EDMA、HWA和ADCBuf外设(open函数)
初始化后建立MmwDemo_mmWaveCtrlTask线程

数据路径定义

初始化DPM、LVDS、DPC等
DPC报告回调:MmwDemo_DPC_ObjectDetection_reportFxn
DPC相关函数回调:gDPC_ObjectDetectionCfg(这部分下文会讲到)
这里DPC建立了一个新线程MmwDemo_DPC_ObjectDetection_dpmTask

执行校准

在函数MmwDemo_calibInit中对校准参数进行获取 另外 初始化用户级QSPI
建立CLI线程CLI_task

CLI_task

CLI让SOC变成一个类似shell指令的设备 可以通过串口接收函数来进行配置、操作 也可以进行log输出等等

CLI初始化

CLI的配置中指定了串口0作为CLI功能

cliCfg.cliUartHandle                = gMmwMCB.commandUartHandle;

函数MmwDemo_CLIInit 定义了多个命令
比如:

cliCfg.tableEntry[cnt].cmd            = "sensorStart";
cliCfg.tableEntry[cnt].helpString     = "[doReconfig(optional, default:enabled)]";
cliCfg.tableEntry[cnt].cmdHandlerFxn  = MmwDemo_CLISensorStart;

接收到"sensorStart"字符串的时候执行MmwDemo_CLISensorStart函数
helpString为传递的参数
再比如:

cliCfg.tableEntry[cnt].cmd            = "adcbufCfg";
cliCfg.tableEntry[cnt].helpString     = "<subFrameIdx> <adcOutputFmt> <SampleSwap> <ChanInterleave> <ChirpThreshold>";
cliCfg.tableEntry[cnt].cmdHandlerFxn  = MmwDemo_CLIADCBufCfg;

配置ADCBuf
传入的参数按helpString指示 中间以空格分开

命令函数一览:

static int32_t MmwDemo_CLICfarCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIMultiObjBeamForming (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLICalibDcRangeSig (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIClutterRemoval (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLISensorStart (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLISensorStop (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIGuiMonSel (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIADCBufCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLICompRangeBiasAndRxChanPhaseCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIMeasureRangeBiasAndRxChanPhaseCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLICfarFovCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIAoAFovCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIExtendedMaxVelocity (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIChirpQualityRxSatMonCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIChirpQualitySigImgMonCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIAnalogMonitorCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLILvdsStreamCfg (int32_t argc, char* argv[]);
static int32_t MmwDemo_CLIConfigDataPort (int32_t argc, char* argv[]);

开启雷达则调用的是MmwDemo_CLISensorStart 函数

MMWave_open

CLI接收到信号后 调用MmwDemo_CLISensorStart函数 对应到MmwDemo_openSensor
这里函数MMWave_open是固定参数 配置为默认校准 频率范围为60G-64G

/* Setup the calibration frequency */
gMmwMCB.cfg.openCfg.freqLimitLow  = 600U;
gMmwMCB.cfg.openCfg.freqLimitHigh = 640U;

/* start/stop async events */
gMmwMCB.cfg.openCfg.disableFrameStartAsyncEvent = false;
gMmwMCB.cfg.openCfg.disableFrameStopAsyncEvent  = false;

/* No custom calibration: */
gMmwMCB.cfg.openCfg.useCustomCalibration        = false;
gMmwMCB.cfg.openCfg.customCalibrationEnableMask = 0x0;

/* calibration monitoring base time unit
 * setting it to one frame duration as the demo doesnt support any 
 * monitoring related functionality
 */
gMmwMCB.cfg.openCfg.calibMonTimeUnit            = 1; 

MMWave_config

同样在函数MmwDemo_CLISensorStart中被调用 对应到MmwDemo_configSensor
参数ctrlCfg则在CLI中通过串口发送过来
在线程MmwDemo_DPC_ObjectDetection_dpmTask中调用了DPM_ioctl从而触发回调
这里回调函数:DPC_ObjectDetection_ioctl

MMWave_start

CLI接收到信号后 调用MmwDemo_CLISensorStart函数 对应到MmwDemo_startSensor
该函数调用了MmwDemo_dataPathStart (DPM_start)用于开始DPM
而后就开始了
这里回调函数:DPC_ObjectDetection_start

雷达循环开始

frame事件:回调DPC_ObjectDetection_frameStart
chirp事件:回调DPC_ObjectDetection_execute 这里调用了HWA

MmwDemo_DPC_ObjectDetection_dpmTask

该线程也是一个死循环
主要任务就是执行DPC和计算
该线程执行时 同步CLI线程(其实是一直在调用 同时同步毫米波雷达采集 只不过这部分是在CLI中被控制的)
在CLI中调用MmwDemo_CLISensorStart函数后 会调用MmwDemo_startSensor
从而执行MmwDemo_dataPathStart 调用DPM_start函数 然后这一部分线程才能进行有效工作

初始化

执行DPM 函数DPM_execute 该函数同MMWave_execute 需要在DPC上下文中调用
对各个参数进行赋值 配置ADCBuf、LVDS、EDMA等

数据获取

执行DPM 函数DPM_execute 中传参resultBuffer 用于接收结果
if (resultBuffer.size[0] == sizeof(DPC_ObjectDetection_ExecuteResult))
数据有效
才能继续进行
该判断语句有if没有else
所以数据无效 则一直调用函数DPM_execute 直到数据有效
如果CLI中没有配置好的话 这一部分就一直是个空函数

时间戳获取

通过Cycleprofiler外设获取时间戳 函数Cycleprofiler_getTimeStamp
同时 可以用其获取到该周期内的当前时间、开始时间等

currentInterFrameProcessingEndTime = Cycleprofiler_getTimeStamp();
startTime = Cycleprofiler_getTimeStamp();

数据计算

执行LVDS Stream、DPC等相关函数
大部分以回调的形式体现gDPC_ObjectDetectionCfg
回调部分进行了HWA等模板的调用 见下文

数据输出

调用MmwDemo_transmitProcessedOutput函数 采用串口1进行数据输出
在此函数内 有一个结构体类型DPIF_PointCloudCartesian 就是点云数据
该结构体属于DPC模块下的DPIF部分 见下文

等待完成

等待当前帧的处理完成
重新获取时间戳 并配置ADCBuf等 为下一帧做准备
调用DPM_ioctl触发DPC相关回调

继续循环

下一次frame事件继续上面的操作 直到接收到stop指令后 关闭相关功能

数据输出

数据输出函数MmwDemo_transmitProcessedOutput
传入三个参数

UART_Handle uartHandle,
DPC_ObjectDetection_ExecuteResult *result,
MmwDemo_output_message_stats      *timingInfo

第一个为串口句柄
第二个result的类型为DPC_ObjectDetection_ExecuteResult
第三个为时间数据

/** @brief Transmits detection data over UART
*
*    The following data is transmitted:
*    1. Header (size = 32bytes), including "Magic word", (size = 8 bytes)
*       and including the number of TLV items
*    TLV Items:
*    2. If detectedObjects flag is 1 or 2, DPIF_PointCloudCartesian structure containing
*       X,Y,Z location and velocity for detected objects,
*       size = sizeof(DPIF_PointCloudCartesian) * number of detected objects
*    3. If detectedObjects flag is 1, DPIF_PointCloudSideInfo structure containing SNR
*       and noise for detected objects,
*       size = sizeof(DPIF_PointCloudCartesian) * number of detected objects
*    4. If logMagRange flag is set,  rangeProfile,
*       size = number of range bins * sizeof(uint16_t)
*    5. If noiseProfile flag is set,  noiseProfile,
*       size = number of range bins * sizeof(uint16_t)
*    6. If rangeAzimuthHeatMap flag is set, the zero Doppler column of the
*       range cubed matrix, size = number of Rx Azimuth virtual antennas *
*       number of chirps per frame * sizeof(uint32_t)
*    7. If rangeDopplerHeatMap flag is set, the log magnitude range-Doppler matrix,
*       size = number of range bins * number of Doppler bins * sizeof(uint16_t)
*    8. If statsInfo flag is set, the stats information
*   @param[in] uartHandle   UART driver handle
*   @param[in] result       Pointer to result from object detection DPC processing
*   @param[in] timingInfo   Pointer to sub-frame object stats that contains timing info
*/

当满足条件时 即可获取到正确数据

时间参数

点云数据

DPC相关函数及回调

在objectdetection.c文件中

DPM_ProcChainCfg gDPC_ObjectDetectionCfg =
{
    DPC_ObjectDetection_init,            /* Initialization Function:         */
    DPC_ObjectDetection_start,           /* Start Function:                  */
    DPC_ObjectDetection_execute,         /* Execute Function:                */
    DPC_ObjectDetection_ioctl,           /* Configuration Function:          */
    DPC_ObjectDetection_stop,            /* Stop Function:                   */
    DPC_ObjectDetection_deinit,          /* Deinitialization Function:       */
    NULL,                                /* Inject Data Function:            */
    NULL,                                /* Chirp Available Function:        */
    DPC_ObjectDetection_frameStart       /* Frame Start Function:            */
};

该部分函数多以回调的方式进行 属于线程MmwDemo_DPC_ObjectDetection_dpmTask中的一部分

其他函数

MmwDemo_stopSensor

该函数调用MmwDemo_MMWave_stop
并用MMWave_stop关闭雷达
停止传感器函数 没有被调用过

MmwDemo_sleep

休眠
汇编指令WFI:

asm(" WFI ");

任意中断都可以退出 没有被调用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/944458.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开学季,“护眼教室”上线,守护孩子光明未来

在关于教室的记忆里&#xff0c;你是否有着这样的滤镜&#xff1f; “电影”滤镜&#xff1a;模糊又遥远&#xff0c;夜间自习像褪色的胶片。 “眩光”滤镜&#xff1a;灯光亮到出现“光环”&#xff0c;看不了多久眼睛就酸胀。 “频闪”滤镜&#xff1a;头顶的灯仿佛飞速眨眼…

Android Mvvm设计模式的详解与实现

一、介绍 在开发设计模式中&#xff0c;模式经历了多次迭代&#xff0c;从MVC到MVP&#xff0c;再到如今的MVVM。发现的过程其实很简单&#xff0c;就是为了项目更好的管理。 设计模式严格来说属于软件工程的范畴&#xff0c;但是如今在各大面试中或者开发中&#xff0c;设计模…

MySQL 更新语句是怎么执行的

更新语句的执行流程 更新语句的执行流程图为什么要两阶段提交呢&#xff1f; 更新语句的执行流程图 更新语句的执行是 Server 层和引擎层配合完成&#xff0c;数据除了要写入表中&#xff0c;还要记录相应的日志。 update 语句的执行流程图&#xff0c;图中浅色框表示是在 In…

为何反射探针关闭Mipmap后变成了白图

1&#xff09;为何反射探针关闭Mipmap后变成了白图 2&#xff09;2021.3 Android从AssetBundle中加载视频播放失败问题 3&#xff09;SBP是否可以解决打包时FBX等模型文件中额外的GameObject 4&#xff09;Addressables加载已打包过的Prefab后Mono脚本丢失 这是第349篇UWA技术知…

CSS3D+动画

CSS3D 1.css3D 给父元素设置 perspective:景深:近大远小的效果900-1200px这个范围内 transform-style:是否设置3D环境 flat 2D环境 默认值 perserve-3D环境 3D功能函数 1.位移: translateZ()translate3D(x,y,z) <!DOCTYPE html> <html lang"en"><h…

【Python小练习】利用DES进行加密解密

from Crypto.Cipher import DES from Crypto.Util.Padding import pad, unpad import json# 创建 DES 加密对象 key b123456 # 8字节的密钥&#xff0c;注意必须为字节类型 cipher DES.new(key, DES.MODE_ECB)# 加密 def encrypt_data(data):plaintext json.dumps(data).en…

安防视频监控/视频集中存储/云存储平台EasyCVR平台无法播放HLS协议该如何解决?

视频云存储/安防监控EasyCVR视频汇聚平台基于云边端智能协同&#xff0c;支持海量视频的轻量化接入与汇聚、转码与处理、全网智能分发、视频集中存储等。音视频流媒体视频平台EasyCVR拓展性强&#xff0c;视频能力丰富&#xff0c;具体可实现视频监控直播、视频轮播、视频录像、…

【Java基础篇】一文搞懂Java方法的调用与重载(超详细)

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【JavaSE_primary】 目录 一、方法的概念以及使用1.1什么是方法1.2方法定义1.3方法调用的执行过程1.4形参和实参的关系 二、方法的重载方…

MT4中如何设置Heikin-Ashi图表,10秒钟教会

所有人都在告诉你&#xff0c;在MT4中使用Heikin-Ashi烛台图表能在交易中盈利&#xff0c;但没有人告诉如何在MT4中添加Heikin-Ashi图表&#xff0c;如何设置Heikin-Ashi图表&#xff0c;其实很简单&#xff0c;FPmarkets澳福10秒钟教会&#xff0c;如果不好使&#xff0c;FPma…

VS2008统计代码行数

1.利用组合键&#xff08;ctrl shift F&#xff09;&#xff0c;查找&#xff1a; b*[^:b#/].*$ 结果如下&#xff1a; 如图所示&#xff0c;一共 104093行代码。

【网络安全防护】上海道宁与Bitdefender帮助您构建弹性网络并降低安全运营成本

在网络的世界中 风险变得更加常见与复杂 企业需要从网络安全转向网络弹性 复杂的网络攻击已非常普遍 在面临攻击时 企业如何保持业务连续性&#xff1f; Bitdefender GravityZone将 风险分析、安全加固、威胁预防 检测和响应功能相结合 帮助您构建弹性网络 并降低安全…

vue集成mars3d后,basemaps加不上去

首先&#xff1a; <template> <div id"centerDiv" class"mapcontainer"> <mars-map :url"configUrl" οnlοad"onMapload" /> </div> </template> <script> import MarsMap from ../component…

如何利用 CRM 做好销售渠道管理?

销售渠道管理是成功销售战略的一个重要方面。它涉及建立、跟踪和组织销售流程的各个阶段&#xff0c;以确保顺利、高效地将潜在客户转化为付费客户。 销售渠道管理为跟踪和优先处理交易提供了一个清晰的框架&#xff0c;采用销售渠道漏斗模板可以进一步简化流程。通过有效管理…

Linux系统下vim常用命令

一、基础命令&#xff1a; v:可视模式 i:插入模式 esc:命令模式下 :q &#xff1a;退出 :wq &#xff1a;保存并退出 ZZ&#xff1a;保存并退出 :q! &#xff1a;不保存并强制退出二、在Esc下&#xff1a; dd : 删除当前行 yy:复制当前行 p:复制已粘贴的文本 u:撤销上一步 U:…

使用Python和systemctl管理Linux系统服务的简便工具

前言 本文介绍了一个实用工具&#xff0c;用于在Linux系统上管理systemctl服务。该工具提供了创建、安装、卸载、启动和停止服务的功能&#xff0c;帮助用户轻松地管理和控制正在运行的服务。 通过使用该代码&#xff0c;你可以轻松地执行以下操作&#xff1a; 创建服务文件&…

解决centos离线安装cmake找不到OpenSSL问题

安装方法&#xff1a;见另外一篇文章 https://blog.csdn.net/zhongxj183/article/details/118488629 按照文章下载了离线gcc 和OpenSSL&#xff0c;以及在cmake官网下载了最新版 cmake-3.27.4.tar.gz 顺利安装gcc 和OpenSSL 但执行编译cmake时&#xff0c;报错找不到OpenSSL…

软考A计划-网络工程师-必考知识点-下

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 &#x1f449;关于作者 专注于Android/Unity和各种游…

液冷连接器快速接头

液冷连接器快速接头常用介质 水、乙二醇水溶液、纯乙二醇、空调制冷剂和硅油等。 液冷连接器快速接头应用 强振动冷却回路手动连接雷达数据中心电子冷却吊舱 液冷连接器快速接头材质 主体材料不锈钢或经表面处理的铝合金 密封圈选用低温硅橡胶或HNBR 液冷连接器快速接头主…

5G智能网关如何解决城市停车痛点难点

2023年上半年&#xff0c;我国汽车新注册登记1175万辆&#xff0c;同比增长5.8%&#xff0c;88个城市汽车保有量超过100万辆&#xff0c;北京、成都等24个城市超过300万辆。随着车辆保有量持续增加&#xff0c;停车难问题长期困扰城市居民&#xff0c;也导致城市路段违停普遍、…

架构设计:Docker容器化部署

在现代软件开发和部署中&#xff0c;Docker 容器化技术已经成为一种重要的解决方案。它不仅简化了应用程序的构建和部署过程&#xff0c;还提供了跨环境一致性、可移植性和高效性。本文将介绍一个完整的 Docker 容器化部署架构设计&#xff0c;帮助您深入了解如何将应用程序成功…