计算机毕设 基于深度学习的植物识别算法 - cnn opencv python

news2025/1/18 6:59:05

文章目录

  • 0 前言
  • 1 课题背景
  • 2 具体实现
  • 3 数据收集和处理
  • 3 MobileNetV2网络
  • 4 损失函数softmax 交叉熵
    • 4.1 softmax函数
    • 4.2 交叉熵损失函数
  • 5 优化器SGD
  • 6 最后


0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 **基于深度学习的植物识别算法 **

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

1 课题背景

植物在地球上是一种非常广泛的生命形式,直接关系到人类的生活环境,目前,植物识别主要依靠相关行业从业人员及有经验专家实践经验,工作量大、效率低。近年来,随着社会科技及经济发展越来越快,计算机硬件进一步更新,性能也日渐提高,数字图像采集设备应用广泛,设备存储空间不断增大,这样大量植物信息可被数字化。同时,基于视频的目标检测在模式识别、机器学习等领域得到快速发展,进而基于图像集分类方法研究得到发展。
本项目基于深度学习实现图像植物识别。

2 具体实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 数据收集和处理

数据是深度学习的基石
数据的主要来源有: 百度图片, 必应图片, 新浪微博, 百度贴吧, 新浪博客和一些专业的植物网站等
爬虫爬取的图像的质量参差不齐, 标签可能有误, 且存在重复文件, 因此必须清洗。清洗方法包括自动化清洗, 半自动化清洗和手工清洗。
自动化清洗包括:

  • 滤除小尺寸图像.
  • 滤除宽高比很大或很小的图像.
  • 滤除灰度图像.
  • 图像去重: 根据图像感知哈希.

半自动化清洗包括:

  • 图像级别的清洗: 利用预先训练的植物/非植物图像分类器对图像文件进行打分, 非植物图像应该有较低的得分; 利用前一阶段的植物分类器对图像文件 (每个文件都有一个预标类别) 进行预测, 取预标类别的概率值为得分, 不属于原预标类别的图像应该有较低的得分. 可以设置阈值, 滤除很低得分的文件; 另外利用得分对图像文件进行重命名, 并在资源管理器选择按文件名排序, 以便于后续手工清洗掉非植物图像和不是预标类别的图像.
  • 类级别的清洗

手工清洗: 人工判断文件夹下图像是否属于文件夹名所标称的物种, 这需要相关的植物学专业知识, 是最耗时且枯燥的环节, 但也凭此认识了不少的植物.

3 MobileNetV2网络

简介

MobileNet网络是Google最近提出的一种小巧而高效的CNN模型,其在accuracy和latency之间做了折中。

主要改进点

相对于MobileNetV1,MobileNetV2 主要改进点:

  • 引入倒残差结构,先升维再降维,增强梯度的传播,显著减少推理期间所需的内存占用(Inverted Residuals)
  • 去掉 Narrow layer(low dimension or depth) 后的 ReLU,保留特征多样性,增强网络的表达能力(Linear Bottlenecks)
  • 网络为全卷积,使得模型可以适应不同尺寸的图像;使用 RELU6(最高输出为 6)激活函数,使得模型在低精度计算下具有更强的鲁棒性
  • MobileNetV2 Inverted residual block 如下所示,若需要下采样,可在 DW 时采用步长为 2 的卷积
  • 小网络使用小的扩张系数(expansion factor),大网络使用大一点的扩张系数(expansion factor),推荐是5~10,论文中 t = 6 t = 6t=6

倒残差结构(Inverted residual block

ResNet的Bottleneck结构是降维->卷积->升维,是两边细中间粗

而MobileNetV2是先升维(6倍)-> 卷积 -> 降维,是沙漏形。
在这里插入图片描述区别于MobileNetV1, MobileNetV2的卷积结构如下:
在这里插入图片描述
因为DW卷积不改变通道数,所以如果上一层的通道数很低时,DW只能在低维空间提取特征,效果不好。所以V2版本在DW前面加了一层PW用来升维。

同时V2去除了第二个PW的激活函数改用线性激活,因为激活函数在高维空间能够有效地增加非线性,但在低维空间时会破坏特征。由于第二个PW主要的功能是降维,所以不宜再加ReLU6。
在这里插入图片描述
tensorflow相关实现代码

import tensorflow as tf
import numpy as np
from tensorflow.keras import layers, Sequential, Model

class ConvBNReLU(layers.Layer):
    def __init__(self, out_channel, kernel_size=3, strides=1, **kwargs):
        super(ConvBNReLU, self).__init__(**kwargs)
        self.conv = layers.Conv2D(filters=out_channel, 
                                  kernel_size=kernel_size, 
                                  strides=strides, 
                                  padding='SAME', 
                                  use_bias=False,
                                  name='Conv2d')
        self.bn = layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='BatchNorm')
        self.activation = layers.ReLU(max_value=6.0)   # ReLU6
        
    def call(self, inputs, training=False, **kargs):
        x = self.conv(inputs)
        x = self.bn(x, training=training)
        x = self.activation(x)
        
        return x



class InvertedResidualBlock(layers.Layer):
    def __init__(self, in_channel, out_channel, strides, expand_ratio, **kwargs):
        super(InvertedResidualBlock, self).__init__(**kwargs)
        self.hidden_channel = in_channel * expand_ratio
        self.use_shortcut = (strides == 1) and (in_channel == out_channel)
        
        layer_list = []
        # first bottleneck does not need 1*1 conv
        if expand_ratio != 1:
            # 1x1 pointwise conv
            layer_list.append(ConvBNReLU(out_channel=self.hidden_channel, kernel_size=1, name='expand'))
        layer_list.extend([
            
            # 3x3 depthwise conv 
            layers.DepthwiseConv2D(kernel_size=3, padding='SAME', strides=strides, use_bias=False, name='depthwise'),
            layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='depthwise/BatchNorm'),
            layers.ReLU(max_value=6.0),
            
            #1x1 pointwise conv(linear) 
            # linear activation y = x -> no activation function
            layers.Conv2D(filters=out_channel, kernel_size=1, strides=1, padding='SAME', use_bias=False, name='project'),
            layers.BatchNormalization(momentum=0.9, epsilon=1e-5, name='project/BatchNorm')
        ])
        
        self.main_branch = Sequential(layer_list, name='expanded_conv')
    
    def call(self, inputs, **kargs):
        if self.use_shortcut:
            return inputs + self.main_branch(inputs)
        else:
            return self.main_branch(inputs)  


4 损失函数softmax 交叉熵

4.1 softmax函数

Softmax函数由下列公式定义
在这里插入图片描述
softmax 的作用是把 一个序列,变成概率。

在这里插入图片描述

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,所有概率的和将等于1。

python实现

def softmax(x):
    shift_x = x - np.max(x)    # 防止输入增大时输出为nan
    exp_x = np.exp(shift_x)
    return exp_x / np.sum(exp_x)

PyTorch封装的Softmax()函数

dim参数:

  • dim为0时,对所有数据进行softmax计算
  • dim为1时,对某一个维度的列进行softmax计算
  • dim为-1 或者2 时,对某一个维度的行进行softmax计算
import torch
x = torch.tensor([2.0,1.0,0.1])
x.cuda()
outputs = torch.softmax(x,dim=0)
print("输入:",x)
print("输出:",outputs)
print("输出之和:",outputs.sum())

4.2 交叉熵损失函数

定义如下:
在这里插入图片描述
python实现

def cross_entropy(a, y):
    return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
 
# tensorflow version
loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1]))
 
# numpy version
loss = np.mean(-np.sum(y_*np.log(y), axis=1))

PyTorch实现
交叉熵函数分为二分类(torch.nn.BCELoss())和多分类函数(torch.nn.CrossEntropyLoss()

# 二分类 损失函数
loss = torch.nn.BCELoss()
l = loss(pred,real)
# 多分类损失函数
loss = torch.nn.CrossEntropyLoss()

5 优化器SGD

简介
SGD全称Stochastic Gradient Descent,随机梯度下降,1847年提出。每次选择一个mini-batch,而不是全部样本,使用梯度下降来更新模型参数。它解决了随机小批量样本的问题,但仍然有自适应学习率、容易卡在梯度较小点等问题。
在这里插入图片描述
pytorch调用方法:

torch.optim.SGD(params, lr=<required parameter>, momentum=0, dampening=0, weight_decay=0, nesterov=False)

相关代码:

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay'] # 权重衰减系数
            momentum = group['momentum'] # 动量因子,0.9或0.8
            dampening = group['dampening'] # 梯度抑制因子
            nesterov = group['nesterov'] # 是否使用nesterov动量

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0: # 进行正则化
                	# add_表示原处改变,d_p = d_p + weight_decay*p.data
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p] # 之前的累计的数据,v(t-1)
                    # 进行动量累计计算
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
                    else:
                    	# 之前的动量
                        buf = param_state['momentum_buffer']
                        # buf= buf*momentum + (1-dampening)*d_p
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov: # 使用neterov动量
                    	# d_p= d_p + momentum*buf
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf
				# p = p - lr*d_p
                p.data.add_(-group['lr'], d_p)

        return loss

6 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/944040.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

跨境电商面临的法律与合规问题

跨境电商在全球范围内取得了飞速的发展&#xff0c;但这一领域也伴随着复杂的法律与合规问题&#xff0c;涉及国际法律、知识产权、税务、隐私等多个方面。在跨境电商中&#xff0c;合法合规的经营不仅有助于企业长期发展&#xff0c;还能增强消费者信任&#xff0c;提升市场竞…

使用docker、docker-compose部署微服务

使用docker、docker-compose部署微服务 一、使用docker部署1、准备2、上传jar包3、编写dockerfile文件3、构建镜像和容器 二、使用docker-compose部署1、准备服务的jar包和dockerfile文件2、编写docker-compose.yml文件3、docker-compose常用命令&#xff08;1&#xff09;、前…

地下水质分析积分球

我国的河流水资源相当丰富&#xff0c;河川径流总量历年来位居世界第三&#xff0c;年均达到了27000亿m。但经济快速发展的同时对河流水资源产生了一定的负面影响&#xff0c;河流水质污染和富营养化的现象偶有发生&#xff0c;在对我国七大水系216条河流503个主要断面进行监测…

冠达管理:什么是k线怎样看k线图?

K线图是一种股票商场常用的价格图表&#xff0c;它显现了一段时刻内股票开盘价、收盘价、最高价和最低价等信息。K线起源于日本&#xff0c;在上世纪90年代被引进到全球股市中。跟着股市的开展&#xff0c;K线图已经成为股票商场数据剖析中常用的工具&#xff0c;因此了解K线图…

一文速学-让神经网络不再神秘,一天速学神经网络基础-前向传播(三)

前言 思索了很久到底要不要出深度学习内容&#xff0c;毕竟在数学建模专栏里边的机器学习内容还有一大半算法没有更新&#xff0c;很多坑都没有填满&#xff0c;而且现在深度学习的文章和学习课程都十分的多&#xff0c;我考虑了很久决定还是得出神经网络系列文章&#xff0c;…

C语言这么没用??

今日话题&#xff0c;C语言真的这么不堪吗&#xff1f;最近我兄弟向我倾诉&#xff0c;他在几天前受到老板的责骂&#xff0c;原因是他只懂C语言编程&#xff0c;无法达到老板的期望。其实不是C语言不堪&#xff0c;而是嵌入式领域复杂性多种多样&#xff0c;需要灵活的解决方案…

idea查找maven所有依赖

文章目录 idea自带的依赖结构图idea安装maven helper插件 idea自带的依赖结构图 缺点是只有依赖&#xff0c;没有版本 idea安装maven helper插件 settings–>plugins–>搜索maven helper并安装 安装后打开pom.xml文件会有依赖解析 勾选conflict就是有冲突的依赖选中…

ACE_Proactor

服务端代码&#xff1a; #include "stdafx.h" #include <iostream> #include "ace/Message_Queue.h" #include "ace/Asynch_IO.h" #include "ace/OS.h" #include "ace/Proactor.h" #include "ace/Asynch_Accept…

knife4j 整合 springboot

官方文档&#xff1a;https://doc.xiaominfo.com/knife4j 版本兼容说明&#xff1a;https://doc.xiaominfo.com/docs/quick-start/start-knife4j-version 升级说明&#xff1a;https://doc.xiaominfo.com/docs/upgrading/upgrading-to-v4版本兼容惯关系&#xff1a; springboot…

【微信小程序】小程序隐私保护指引设置

首先了解官方提供demo&#xff1a; demo1: 演示使用 wx.getPrivacySetting 和 <button open-type"agreePrivacyAuthorization"> 在首页处理隐私弹窗逻辑 https://developers.weixin.qq.com/s/gi71sGm67hK0 demo2: 演示使用 wx.onNeedPrivacyAuthorization 和…

Python面试:什么是GIL

1. GIL (Global Interpreter lock)可以避免多个线程同时执行字节码。 import threadinglock threading.Lock()n [0]def foo():with lock:n[0] n[0] 1n[0] n[0] 1threads [] for i in range(5000):t threading.Thread(targetfoo)threads.append(t)for t in threads:t.s…

深入解析文件系统原理(inode,软硬链接区别)

第四阶段提升 时 间&#xff1a;2023年8月29日 参加人&#xff1a;全班人员 内 容&#xff1a; 深入解析文件系统原理 目录 一、Inode and Block概述 &#xff08;一&#xff09;查看文件的inode信息&#xff1a;stat &#xff08;二&#xff09;Atime、Mtime、Ctime详…

高精度 低纹波|12A大电流电源解决方案,网通、视频显示、国产PC行业多领域适用

随着科技的快速发展&#xff0c;各行业产品都在不断迭代和加速升级&#xff0c;TV产品也不例外。TV产品的演变一直朝着大尺寸、高分辨率的方向发展&#xff0c;从2K到4K再升级至8K&#xff0c;每一次的升级都为消费者带来更好的视觉体验。 从技术层面来看&#xff0c;“8K大尺寸…

RocketMQ消息查询

区别于消息消费&#xff1a;先尝后买 尝就是消息查询 买&#xff1a;消息的消费 RocketMQ支持按照下面两种维度("按照Message ld查询消息"、"按照Message Key查询消息")进行消息查询。 1按照Messageld查询消息 Msgld总共16字节&#xff0c;包含消息存储…

[Mac软件]Adobe After Effects 2023 v23.5 中文苹果电脑版(支持M1)

After Effects是动画图形和视觉效果的行业标准。由运动设计师、平面设计师和视频编辑用于创建复杂的动画图形和视觉上吸引人的视频。 创建动画图形 使用预设样式为文本和图形添加动画效果&#xff0c;或逐帧调整它们。编辑、添加深度、制作动画或转换为可编辑的路径&#xff…

冠达管理:美股涨了!“越南特斯拉”市值直追丰田!这一论坛将召开

当地时间8月28日&#xff0c;美股三大股指团体收涨&#xff0c;到收盘&#xff0c;道指报34559.98点&#xff0c;涨0.62%&#xff1b;标普500指数报4433.31点&#xff0c;涨0.63%&#xff1b;纳指报13705.13点&#xff0c;涨0.84%。 高盛上星期五发布的数据显现&#xff0c;在英…

聚焦数据安全,“2023数据安全平台神兽企业”调研正式启动

当下&#xff0c;数字经济正蓬勃发展&#xff0c;数据已成为关键驱动力&#xff0c;而数据安全是保障数据要素价值的前提。数据安全建设也正在从孤立的数据安全产品过渡到数据安全平台&#xff0c;以更大程度促进数据的业务利用率和价值。 为了更好洞察和反映当前数据安全平台…

开发工具——IDE安装 / IDEA子module依赖导入失败编译提示xx找不到符号 / IDEA在Git提交时卡顿

近期换了工作电脑&#xff0c;公司的IT团队不够给力&#xff0c;不能复制电脑系统&#xff0c;所以又到了需要重装IDE配置开发环境的时候了&#xff1b;在安装和导入Java编译器IDEA的时候遇到一些"棘手"问题&#xff0c;这里整理下解决方法以备不时之需&#xff1b; …

bootloader串口更新程序[瑕疵学习板]

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、储备知识二、程序步骤2.程序展示1.bootloader2.然后是主运行函数总结前言 很久没有更新文章了。最近工作太忙,没有学习很多的知识,然后这两天不忙了,就学习了一下bootloader的程序升级…

hive lateral view 实践记录(Array和Map数据类型)

目录 一、Array 1.建表并插入数据 2.lateral view explode 二、Map 1、建表并插入数据 2、lateral view explode() 3、查询数据 一、Array 1.建表并插入数据 正确插入数据&#xff1a; create table tmp.test_lateral_view_movie_230829(movie string,category array&…