一般星座点的先验分布
我们考虑通信系统中常用的QAM信号,比如BPSK、QPSK、16QAM等。定义星座点集合为
S
\mathcal S
S,那么,我们考虑一个一般的先验分布
p
(
x
)
=
(
1
−
γ
)
δ
(
x
)
+
γ
∑
i
p
s
i
(
s
i
)
δ
(
x
−
s
i
)
p(x) = (1- \gamma) \delta(x) + \gamma \sum_i p_{s_i} (s_i) \delta( x - s_i)
p(x)=(1−γ)δ(x)+γi∑psi(si)δ(x−si)
- 其中 γ ∈ [ 0 , 1 ] \gamma \in [0,1] γ∈[0,1]表示稀疏度,当 γ < 1 \gamma < 1 γ<1时,有效星座点为 { 0 } ∪ S \{0\} \cup \mathcal S {0}∪S,为 γ = 1 \gamma=1 γ=1时,为 S \mathcal S S。
- ∑ i p s i ( s i ) = 1 \sum_i p_{s_i} (s_i)=1 ∑ipsi(si)=1,没有其他信息时,认为 p s i ( s i ) = 1 ∣ S ∣ p_{s_i} (s_i) = \frac{1}{|\mathcal S|} psi(si)=∣S∣1。
AWGN信道模型(或者其他可以提供星座点软信息的模型,例如AMP类算法)
给定AWGN信道模型
r
=
x
+
w
r = x + w
r=x+w
其中 x ∼ p ( x ) x \sim p(x) x∼p(x), w ∼ C N ( w ; 0 , ν r ) w \sim \mathcal {CN}(w; 0, \nu^r) w∼CN(w;0,νr)。我们知道关于 x x x的
- 似然信息: p ( r ∣ x ) = C N ( x ; r , ν r ) p(r|x) = \mathcal {CN}(x; r, \nu^r) p(r∣x)=CN(x;r,νr)
- 先验信息: p ( x ) = ( 1 − γ ) δ ( x ) + γ ∑ i p s i ( s i ) δ ( x − s i ) p(x) = (1- \gamma) \delta(x) + \gamma \sum_i p_{s_i} (s_i) \delta( x - s_i) p(x)=(1−γ)δ(x)+γ∑ipsi(si)δ(x−si)
因此,根据贝叶斯准则,可以得到后验分布为:
p
(
x
∣
r
)
=
p
(
r
∣
x
)
p
(
x
)
∫
p
(
r
∣
x
)
p
(
x
)
d
x
=
(
1
−
γ
)
C
N
(
x
;
r
,
ν
r
)
δ
(
x
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
x
;
r
,
ν
r
)
δ
(
x
−
s
i
)
∫
(
(
1
−
γ
)
C
N
(
x
;
r
,
ν
r
)
δ
(
x
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
x
;
r
,
ν
r
)
δ
(
x
−
s
i
)
)
d
x
=
(
1
−
γ
)
C
N
(
x
;
r
,
ν
r
)
δ
(
x
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
δ
(
x
−
s
i
)
(
1
−
γ
)
C
N
(
0
;
r
,
ν
r
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
\begin{aligned} p(x|r) &= \frac{p(r|x)p(x)}{\int p(r|x)p(x) dx} \\ & = \frac{ (1- \gamma) \mathcal {CN}(x; r, \nu^r) \delta(x) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(x; r, \nu^r)\delta( x - s_i) } { \int \left ( (1- \gamma) \mathcal {CN}(x; r, \nu^r) \delta(x) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(x; r, \nu^r) \delta( x - s_i) \right ) dx} \\ & = \frac{(1- \gamma) \mathcal {CN}(x; r, \nu^r) \delta(x) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r) \delta( x - s_i)} { (1- \gamma) \mathcal {CN}(0; r, \nu^r) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r)} \end{aligned}
p(x∣r)=∫p(r∣x)p(x)dxp(r∣x)p(x)=∫((1−γ)CN(x;r,νr)δ(x)+γ∑ipsi(si)CN(x;r,νr)δ(x−si))dx(1−γ)CN(x;r,νr)δ(x)+γ∑ipsi(si)CN(x;r,νr)δ(x−si)=(1−γ)CN(0;r,νr)+γ∑ipsi(si)CN(si;r,νr)(1−γ)CN(x;r,νr)δ(x)+γ∑ipsi(si)CN(si;r,νr)δ(x−si)
后验分布的均值(一阶矩)为
E
[
x
∣
r
]
=
∫
x
p
(
x
∣
r
)
d
x
=
∫
x
(
1
−
γ
)
C
N
(
x
;
r
,
ν
r
)
δ
(
x
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
δ
(
x
−
s
i
)
(
1
−
γ
)
C
N
(
0
;
r
,
ν
r
)
+
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
d
x
=
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
⋅
s
i
(
1
−
γ
)
C
N
(
0
;
r
,
ν
r
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
\begin{aligned} \mathbb E \left [ x| r \right] &= \int x p(x|r) dx \\ &= \int x \frac{(1- \gamma) \mathcal {CN}(x; r, \nu^r) \delta(x) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r) \delta( x - s_i)} { (1- \gamma) \mathcal {CN}(0; r, \nu^r) + + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r)} dx \\ &= \frac{ \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r) \cdot s_i } { (1- \gamma) \mathcal {CN}(0; r, \nu^r) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r)} \end{aligned}
E[x∣r]=∫xp(x∣r)dx=∫x(1−γ)CN(0;r,νr)++γ∑ipsi(si)CN(si;r,νr)(1−γ)CN(x;r,νr)δ(x)+γ∑ipsi(si)CN(si;r,νr)δ(x−si)dx=(1−γ)CN(0;r,νr)+γ∑ipsi(si)CN(si;r,νr)γ∑ipsi(si)CN(si;r,νr)⋅si
后验分布的二阶矩为
E
[
∣
x
∣
2
∣
r
]
=
∫
∣
x
∣
2
p
(
x
∣
r
)
d
x
=
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
⋅
∣
s
i
∣
2
(
1
−
γ
)
C
N
(
0
;
r
,
ν
r
)
+
γ
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
\begin{aligned} \mathbb E \left [ |x|^2 | r \right] &= \int |x|^2 p(x|r) dx \\ & = \frac{ \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r) \cdot |s_i|^2 } { (1- \gamma) \mathcal {CN}(0; r, \nu^r) + \gamma \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r)} \end{aligned}
E[∣x∣2∣r]=∫∣x∣2p(x∣r)dx=(1−γ)CN(0;r,νr)+γ∑ipsi(si)CN(si;r,νr)γ∑ipsi(si)CN(si;r,νr)⋅∣si∣2
后验分布的方差为
var
[
x
∣
r
]
=
E
[
∣
x
∣
2
∣
r
]
−
∣
E
[
x
∣
r
]
∣
2
\text{var}[x|r] = \mathbb E \left [ |x|^2 | r \right] - \left | \mathbb E \left [ x| r \right] \right |^2
var[x∣r]=E[∣x∣2∣r]−∣E[x∣r]∣2
根绝AWGN后验均值与方差的关系,可以进一步得到
∂
∂
r
∗
E
[
x
∣
r
]
=
1
ν
r
var
[
x
∣
r
]
\begin{aligned} \frac { \partial }{\partial r^*} \mathbb E \left [ x| r \right] & = \frac{1}{\nu^r} \text{var}[x|r] \end{aligned}
∂r∗∂E[x∣r]=νr1var[x∣r]
退化到 γ = 1 \gamma=1 γ=1时的统计量(非稀疏)
(1)均值
E
[
x
∣
r
]
=
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
⋅
s
i
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
\mathbb E \left [ x| r \right] = \frac{ \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r) \cdot s_i } { \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r)}
E[x∣r]=∑ipsi(si)CN(si;r,νr)∑ipsi(si)CN(si;r,νr)⋅si
当
p
s
i
(
s
i
)
=
1
∣
S
∣
p_{s_i} (s_i) = \frac{1}{|\mathcal S|}
psi(si)=∣S∣1时,
E
[
x
∣
r
]
=
∑
i
C
N
(
s
i
;
r
,
ν
r
)
⋅
s
i
∑
i
C
N
(
s
i
;
r
,
ν
r
)
\mathbb E \left [ x| r \right] = \frac{ \sum_i \mathcal {CN}(s_i; r, \nu^r) \cdot s_i } { \sum_i \mathcal {CN}(s_i; r, \nu^r)}
E[x∣r]=∑iCN(si;r,νr)∑iCN(si;r,νr)⋅si
(2)二阶矩
E
[
∣
x
∣
2
∣
r
]
=
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
⋅
∣
s
i
∣
2
∑
i
p
s
i
(
s
i
)
C
N
(
s
i
;
r
,
ν
r
)
\begin{aligned} \mathbb E \left [ |x|^2 | r \right] &= \frac{ \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r) \cdot |s_i|^2 } { \sum_i p_{s_i} (s_i) \mathcal {CN}(s_i; r, \nu^r)} \end{aligned}
E[∣x∣2∣r]=∑ipsi(si)CN(si;r,νr)∑ipsi(si)CN(si;r,νr)⋅∣si∣2
当
p
s
i
(
s
i
)
=
1
∣
S
∣
p_{s_i} (s_i) = \frac{1}{|\mathcal S|}
psi(si)=∣S∣1时,
E
[
x
∣
r
]
=
∑
i
C
N
(
s
i
;
r
,
ν
r
)
⋅
∣
s
i
∣
2
∑
i
C
N
(
s
i
;
r
,
ν
r
)
\mathbb E \left [ x| r \right] = \frac{ \sum_i \mathcal {CN}(s_i; r, \nu^r) \cdot |s_i|^2 } { \sum_i \mathcal {CN}(s_i; r, \nu^r)}
E[x∣r]=∑iCN(si;r,νr)∑iCN(si;r,νr)⋅∣si∣2
(3)方差和后验均值的一阶导(不变)
方差:
var
[
x
∣
r
]
=
E
[
∣
x
∣
2
∣
r
]
−
∣
E
[
x
∣
r
]
∣
2
\text{var}[x|r] = \mathbb E \left [ |x|^2 | r \right] - \left | \mathbb E \left [ x| r \right] \right |^2
var[x∣r]=E[∣x∣2∣r]−∣E[x∣r]∣2
后验均值的一阶导:
∂
∂
r
∗
E
[
x
∣
r
]
=
1
ν
r
var
[
x
∣
r
]
\begin{aligned} \frac { \partial }{\partial r^*} \mathbb E \left [ x| r \right] & = \frac{1}{\nu^r} \text{var}[x|r] \end{aligned}
∂r∗∂E[x∣r]=νr1var[x∣r]
星座点检测与译码的联合迭代
我们关注下面的模块迭代,重点关注LLR Exchange模块
假设Detector可以提供星座点的软信息(似然信息
p
(
r
∣
x
)
p(r|x)
p(r∣x)):
p
(
r
∣
x
)
=
C
N
(
x
;
r
,
ν
r
)
p(r|x) = \mathcal {CN}(x; r, \nu^r)
p(r∣x)=CN(x;r,νr),根据似然准则,我们可以计算
p
(
r
∣
x
=
s
i
)
=
C
N
(
x
=
s
i
;
r
,
ν
r
)
,
,
s
i
∈
S
,
∀
i
p(r|x = s_i) = \mathcal {CN}(x=s_i; r, \nu^r) , \ \ , s_i \in \mathcal S, \ \ \forall i
p(r∣x=si)=CN(x=si;r,νr), ,si∈S, ∀i
我们考虑
2
J
2^J
2J-QAM信号,则每个星座点符号
s
i
s_i
si包含
J
J
J个比特,那么
(1)LLR Exchange: Left to Right
第
j
j
j个比特的LLR为
L
L
R
j
=
ln
p
(
r
∣
b
j
=
0
)
p
(
r
∣
b
j
=
1
)
=
ln
∑
s
∈
S
j
−
p
(
r
∣
x
=
s
)
∑
s
∈
S
j
+
p
(
r
∣
x
=
s
)
=
ln
∑
s
∈
S
j
−
C
N
(
x
=
s
;
r
,
ν
r
)
∑
s
∈
S
j
+
C
N
(
x
=
s
;
r
,
ν
r
)
\begin{aligned} LLR_j &= \ln \frac{p(r|b_j=0)}{p(r|b_j=1)} \\ &= \ln \frac{\sum_{s \in \mathcal S^{-}_j } p(r|x = s) } { \sum_{s \in \mathcal S^{+}_j } p(r|x = s) } \\ &= \ln \frac{\sum_{s \in \mathcal S^{-}_j } \mathcal {CN}(x=s; r, \nu^r) } { \sum_{s \in \mathcal S^{+}_j } \mathcal {CN}(x=s; r, \nu^r) } \end{aligned}
LLRj=lnp(r∣bj=1)p(r∣bj=0)=ln∑s∈Sj+p(r∣x=s)∑s∈Sj−p(r∣x=s)=ln∑s∈Sj+CN(x=s;r,νr)∑s∈Sj−CN(x=s;r,νr)
其中 S j − S^{-}_j Sj−和 S j + S^{+}_j Sj+分别表征对应第 j j j个比特为0和1的星座点子集。
(1)LLR Exchange:Right to Left
先把LLR信息转换为bit信息,即
p
(
b
j
=
0
)
=
e
L
L
R
j
1
+
e
L
L
R
j
p
(
b
j
=
1
)
=
1
1
+
e
L
L
R
j
\begin{aligned} p(b_j=0) &= \frac{e^{LLR_j}}{1 + e^{LLR_j}} \\ p(b_j=1) &= \frac{1}{1 + e^{LLR_j}} \end{aligned}
p(bj=0)p(bj=1)=1+eLLRjeLLRj=1+eLLRj1
然后对应到星座点的软信息为:
p
e
(
x
=
s
)
∝
∏
j
p
(
b
j
=
q
j
s
)
,
∀
s
∈
S
p_e(x = s) \propto \prod_{j} p(b_j = q^s_j),\ \ \forall s \in \mathcal S
pe(x=s)∝j∏p(bj=qjs), ∀s∈S
其中 q s ∈ { 0 , 1 } J \boldsymbol q^s \in \{0,1\}^J qs∈{0,1}J表示星座点 s s s解调对应到比特序列。最后归一化即可(实际中为了防止出现数值精度问题,可以先取log,再exp)。
最终 p e ( x = s ) p_e(x=s) pe(x=s)可以对应到星座点的有效先验分布 p s i ( s i ) p_{s_i} (s_i) psi(si),如上所述,不断迭代即可。