CNN 02(CNN原理)

news2025/1/10 3:29:03

一、卷积神经网络(CNN)原理

1.1 卷积神经网络的组成

  • 定义
    • 卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷积神经网络在图像等方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他浅层或深度神经网络,卷积神经网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。

我们来看一下卷积网络的整体结构什么样子。

img

1、32*32图片做一次卷积 变成 6 张图(分别用6个7*7的卷积核同时操作)

2、subsampling   池化,将图片缩小到原图片的一半

3、再次卷积,变成16张图片

4、subsampling   池化,将图片缩小到图片的一半

5、全连接

 其中包含了几个主要结构

  • 卷积层(Convolutions)
  • 池化层(Subsampling)
  • 全连接层(Full connection)
  • 激活函数

1.1.1 卷积层

目的

卷积运算的目的是提取输入的不同特征,某些卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网路能从低级特征中迭代提取更复杂的特征。

 参数 

size:卷积核/过滤器大小,选择有1 *1, 3* 3, 5 * 5(全是奇数)

padding:零填充,Valid 与Same

stride: 卷积核移动的步长,通常默认为1

计算公式 

.png

卷积运算过程

对于之前介绍的卷积运算过程,我们用一张动图来表示更好理解些。一下计算中,假设图片长宽相等,设为N

  • 一个步长,3 X 3 卷积核运算

假设是一张5 X 5 的单通道图片,通过使用3 X 3 大小的卷积核运算得到一个 3 X 3大小的运算结果(图片像素数值仅供参考)

img

我们会发现进行卷积之后的图片变小了,假设N为图片大小,F为卷积核大小

相当于N−F+1=5−3+1=3

如果我们换一个卷积核大小或者加入很多层卷积之后,图像可能最后就变成了1 X 1 大小,这不是我们希望看到的结果。并且对于原始图片当中的边缘像素来说,只计算了一遍,对于中间的像素会有很多次过滤器与之计算,这样导致对边缘信息的丢失

 

缺点 

  • 图像变小
  • 边缘信息丢失

 

针对缺点,解决办法:零填充

padding-零填充

零填充:在图片像素的最外层加上若干层0值,若一层,记做p =1。

  • 为什么增加的是0?

因为0在权重乘积和运算中对最终结果不造成影响,也就避免了图片增加了额外的干扰信息。

img

这张图中,还是移动一个像素,并且外面增加了一层0。那么最终计算结果我们可以这样用公式来计算:

  5 + 2 * p - 3 + 1 = 5

  P为1,那么最终特征结果为5。实际上我们可以填充更多的像素,假设为2层,则

  5 + 2 * 2 - 3 + 1 = 7,这样得到的观察特征大小比之前图片大小还大。所以我们对于零填充会有一些选择,该填充多少?
 

Valid and Same卷积

  有两种形式,所以为了避免上述情况,大家选择都是Same这种填充卷积计算方式

  - Valid :不填充,也就是最终大小为
    - $(N - F + 1) * (N - F + 1)$
  - Same:输出大小与原图大小一致,那么 $N$变成了$N + 2P$
    - $(N + 2P - F + 1) * (N + 2P - F + 1)$

  那也就意味着,之前大小与之后的大小一样,得出下面的等式

(N + 2P - F + 1) = N

P=(F-1)/2


  所以当知道了卷积核的大小之后,就可以得出要填充多少层像素。

奇数维度的过滤器

通过上面的式子,如果F不是奇数而是偶数个,那么最终计算结果不是一个整数,造成0.5,1.5…这种情况,这样填充不均匀,所以也就是为什么卷积核默认都去使用奇数维度大小

  • 1 *1,3* 3, 5 *5,7* 7
  • 另一个解释角度
    • 奇数维度的过滤器有中心,便于指出过滤器的位置

当然这个都是一些假设的原因,最终原因还是在F对于计算结果的影响。所以通常选择奇数维度的过滤器,是大家约定成俗的结果,可能也是基于大量实验奇数能得出更好的结果。

stride-步长

以上例子中我们看到的都是每次移动一个像素步长的结果,如果将这个步长修改为2,3,那结果如何?

img

这样如果以原来的计算公式,那么结果

  N + 2P - F + 1 = 6 + 0 -3 +1 = 4

  但是移动2个像素才得出一个结果,所以公式变为

 (N+2P-F)/2 + 1 = 1.5 + 1 = 2.5,如果相除不是整数的时候,向下取整,为2。这里并没有加上零填充。

  所以最终的公式就为:

  对于输入图片大小为N,过滤器大小为F,步长为S,零填充为P,

多通道卷积

当输入有多个通道(channel)时(例如图片可以有 RGB 三个通道),卷积核需要拥有相同的channel数,每个卷积核 channel 与输入层的对应 channel 进行卷积,将每个 channel 的卷积结果按位相加得到最终的 Feature Map。

img

多卷积核

当有多个卷积核时,可以学习到多种不同的特征,对应产生包含多个 channel 的 Feature Map, 例如上图有两个 filter,所以 output 有两个 channel。这里的多少个卷积核也可理解为多少个神经元。

img

相当于我们把多个功能的卷积核的计算结果放在一起,比如水平边缘检测和垂直边缘检测器。

卷积总结

我们来通过一个例子看一下结算结果,以及参数的计算

  • 假设我们有10 个Filter,每个Filter3 X 3 X 3(计算RGB图片),并且只有一层卷积,那么参数有多少?

计算:每个Filter参数个数为:3∗3∗3+1bias=28个权重参数,总共28 * 10 = 280个参数,即使图片任意大小,我们这层的参数也就这么多。

  • 假设一张200 *200* 3的图片,进行刚才的Filter,步长为1,最终为了保证最后输出的大小为200 * 200,需要设置多大的零填充

设计单个卷积Filter的计算公式

假设神经网络某层l的输入:

 所以通用的表示每一层:

池化层(Pooling)

池化层主要对卷积层学习到的特征图进行亚采样(subsampling)处理,主要由两种

  • 最大池化:Max Pooling,取窗口内的最大值作为输出
  • 平均池化:Avg Pooling,取窗口内的所有值的均值作为输出

意义在于:

  • 降低了后续网络层的输入维度,缩减模型大小,提高计算速度
  • 提高了Feature Map 的鲁棒性,防止过拟合

img

对于一个输入的图片,我们使用一个区域大小为2 *2,步长为2的参数进行求最大值操作。同样池化也有一组参数,f, s,得到2* 2的大小。当然如果我们调整这个超参数,比如说3 * 3,那么结果就不一样了,通常选择默认都是f = 2 * 2, s = 2

池化超参数特点:不需要进行学习,不像卷积通过梯度下降进行更新。

如果是平均池化则:

img

全连接层

卷积层+激活层+池化层可以看成是CNN的特征学习/特征提取层,而学习到的特征(Feature Map)最终应用于模型任务(分类、回归):

  • 先对所有 Feature Map 进行扁平化(flatten, 即 reshape 成 1 x N 向量)
  • 再接一个或多个全连接层,进行模型学习

img

 
  -
    - 卷积过滤器个数
    - 卷积过滤器大小
    - 卷积过滤器步数
    - 卷积过滤器零填充
  - 掌握池化的计算过程原理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/937125.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Dreamweaver软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 Dreamweaver软件是一款专业的网页开发工具,由Adobe公司开发并广泛应用于Web开发领域。它提供了一站式的网页开发解决方案,包括网页设计、网页编程、网站管理和移动应用开发等功能。 Dreamweaver软件具有…

云计算服务体系-架构真题(十四)

云计算服务体系结构SaaS、PaaS、IaaS相对应分别()。 答案。应用层、平台层、基础设施层 (2022)给定关系模式R(U,F),其中U为属性集,F是U的一组函数依赖,那么函数依赖的公理系统(Armstrong)中分解规则是指(&…

API管理测试 - 最佳实践和关键要素

什么是API管理测试? API管理测试是在软件开发和集成功能中对应用程序接口(API)进行测试和验证的过程。它涵盖了测试API的功能、性能、安全性以及与其他系统的交互。API管理测试对于确保API的正确运行和稳定性非常重要。 ​ 为什么API管理测…

39.RESTful案例

RESTful案例 准备环境 Employee.java public class Employee {private Integer id;private String lastName;private String email;//1 male, 0 femaleprivate Integer gender; } //省略get、set和构造方法EmployeeDao.java package com.atguigu.SpringMVC.dao;import com.…

【springboot】WebScoket双向通信:

文章目录 一、介绍:二、案例:三、使用:【1】导入WebSocket的maven坐标【2】导入WebSocket服务端组件WebSocketServer,用于和客户端通信【3】导入配置类WebSocketConfiguration,注册WebSocket的服务端组件【4】导入定时…

神经网络学习小记录75——Keras设置随机种子Seed来保证训练结果唯一

神经网络学习小记录75——Keras设置随机种子Seed来保证训练结果唯一 学习前言为什么每次训练结果不同什么是随机种子训练中设置随机种子 学习前言 好多同学每次训练结果不同,最大的指标可能会差到3-4%这样,这是因为随机种子没有设定导致的,我…

Django项目第一次打开加载不出css文件

你需要找到setting.py如下部分 修改你存放css文件和js等文件的目录 指定正确,本地就能跑了

[好书推荐] 之 <趣化计算机底层技术>

趣化计算机底层技术 底层技术优势购买 底层技术 相信很多老铁跟我一样, 在深入了解底层技术的时候 — — 就很头大 很多书籍看上去跟一个 老学究 一样, 说的话不是我们这些小白看的懂得… 看不懂就会 打击我们的自信心我们就有可能找一堆理由去玩(理所应当地去玩的那一种, 反…

如何使用腾讯云服务器搭建网站?新手建站教程

使用腾讯云服务器搭建网站全流程,包括轻量应用服务器和云服务器CVM建站教程,轻量可以使用应用镜像一键建站,云服务器CVM可以通过安装宝塔面板的方式来搭建网站,腾讯云服务器网分享使用腾讯云服务器建站教程,新手站长搭…

【教程分享】Docker搭建Zipkin,实现数据持久化到MySQL、ES

1 拉取镜像 指定版本,在git查看相应版本,参考: https://github.com/openzipkin/zipkin 如2.21.7 docker pull openzipkin/zipkin:2.21.7 2 启动 Zipkin默认端口为9411。启动时通过-e server.portxxxx设置指定端口 docker run --name zi…

04_21 slab分配器 分配对象实战

目的 ( slab块分配器分配内存)&#xff0c;编写个内核模块&#xff0c;创建名称为 “mycaches"的slab描述符&#xff0c;小为40字节, align为8字节&#xff0c; flags为0。 从这个slab描述符中分配个空闲对象。 代码大概 内核模块中 #include <linux/version.h>…

C++ 网络编程项目fastDFS分布式文件系统(九)总结

1. Location语法 1. 语法规则 location [ |~|~ * |^~ ] /uri/ { … } 正则表达式中的特殊字符 : - . () {} [] * ? 2. Location 优先级说明 在 nginx 的 location 和配置中 location 的顺序没有太大关系。 与 location 表达式的类型有关。 相同类型的表达式&a…

android系统启动流程之zygote如何创建SystemServer进程

SystemServer:是独立的进程&#xff0c;主要工作是管理服务的&#xff0c;它将启动大约90种服务Services. 它主要承担的职责是为APP的运行提供各种服务&#xff0c;像AMS,WMS这些服务并不是一个独立的进程&#xff0c; 它们其实都是SystemServer进程中需要管理的的众多服务之一…

CDN/DCDN(全站加速)排查过程中如何获取Eagle ID/UUID

目录 前言1.通过浏览器直接访问文件时获取Request ID 前言 阿里云CDN/DCDN(全站加速)为接收到的每个请求分配唯一的服务器请求ID&#xff0c;作为关联各类日志信息的标识符。当您在使用CDN/DCDN(全站加速)过程中遇到错误且希望阿里云技术支持提供协助时&#xff0c;需要提交失…

UnitTest笔记: 拓展库DDT的使用

DDT (Data-Drivers- Tests) 允许使用不同的测试数据运行同一个测试用例&#xff0c;展示为不同的测试用例。 第一步&#xff1a; pip安装 ddt 第二步&#xff1a; 创建test_baidu_ddt.py 1. 测试类要使用ddt 修饰 2. 不同形式的参数化&#xff1a; 列表&#xff0c;字典&a…

Java常见的排序算法

排序分为内部排序和外部排序&#xff08;外部存储&#xff09; 常见的七大排序&#xff0c;这些都是内部排序 。 1、插入排序&#xff1a;直接插入排序 1、插入排序&#xff1a;每次将一个待排序的记录&#xff0c;按其关键字的大小插入到前面已排序好的记录序列 中的适当位置…

新版-C语言学生信息管理系统

拥有基本的学生信息系统的功能, 功能点如下所示: 1.添加学生信息 2.修改学生信息 3.删除学生信息 4.查看学生信息 5.搜索学生信息 6.查看系统学生总人数 7.学生信息排序 8.保存学生信息(保存在D:/students.txt) 9.导入学生信息(导入D:/students.txt文件中的信息) 主界面 1.添加…

人工智能轨道交通行业周刊-第57期(2023.8.21-8.27)

本期关键词&#xff1a;桥梁养护、智慧天路、列车通信网络、AIGC产业报告、价值对齐、异常检测 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMet…

浅谈 Java 中的 Lambda 表达式

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 Lambda 表达式是一种匿名函数&#xff0c;它可以作为参数传递给方法或存储在变量中。在 Java8 中&#xff0c;它和函数式接口一起&#xff0c;共同构建了函数式编程的框架。 什么是函数式编程 函数式编程是…

DebugInfo 模块功能系统介绍 文本上色 文本与表格对齐 分隔线 秒表计算器 语义日期

背景 今天系统性的为大家介绍一下 DebugInfo 模块。这个模块提供了一些丰富的基本功能的封装&#xff0c;希望能给有需要的人带来些许帮助。 文本上色 DebugInfo 模块引入了 colorama提供文本颜色支持。 # -*- coding:UTF-8 -*-# region 引入必要依赖 from DebugInfo.DebugI…