大规模 IoT 边缘容器集群管理的几种架构-6-个人体验及推荐

news2024/11/16 1:34:40

前文回顾

  1. 大规模 IoT 边缘容器集群管理的几种架构-0-边缘容器及架构简介
  2. 大规模 IoT 边缘容器集群管理的几种架构-1-Rancher+K3s
  3. 大规模 IoT 边缘容器集群管理的几种架构-2-HashiCorp 解决方案 Nomad
  4. 大规模 IoT 边缘容器集群管理的几种架构-3-Portainer
  5. 大规模 IoT 边缘容器集群管理的几种架构-4-Kubeedge
  6. 大规模 IoT 边缘容器集群管理的几种架构-5-总结

📚️Reference: IoT 边缘计算系列文章

概述

在前文,我列出以下几种解决方案:

  • Rancher + K3s
  • HashiCorp 解决方案 --- Nomad + Docker
  • Portainer + Docker
  • Kubeedge

其中,Rancher + K3s 是基于且兼容 K8s 的解决方案;Kubeedge 是构建于 K8s 之上的,但是核心的 Kubeedge 架构是完全另外一套体系;而 Hashicorp 解决方案和 Portainer 解决方案可以说是和 K8s 没有关系,主要是基于 Docker 等容器的。而且也可以基于其他的驱动(如 podman 等等)

笔者基于边缘架构主要为:单片 arm 开发板的情况,对以上的各个方案进行了深入的体验。

在深入体验另外 2 个容器平台:hashicorp nomad 和 portainer 时,明显感触到:相比 k8s k3s,这 2 个更适合物联网场景。(本章先抛开 KubeEdge 不谈,KubeEdge 我个人认为是适合更复杂的、和业务耦合更深或者需要调度边缘 AI 的高级边缘计算体系。)

K8s 不适合物联网,原因有:

  • 资源占用高,
  • 对网络要求高
  • 网络模型复杂。

K3s 只是(部分)解决了资源占用的问题,但是后两个问题仍然存在。

📝Notes

K3s 是完全兼容 K8s 的发行版,从 1.23 之后,随着 K8s 功能的增加,K3s 也变得越来越重。 根据 K3s 安装要求:

  • 对于 arm64 设备,操作系统必须使用 4k 页面大小;
  • CPU/内存 最低是 1 核 512MB 内存,推荐是 2 核 1G; 但是实际应用场景中,要求会更高,一般内存都是 2G 起步。
  • 更要命的是对存储的要求,K3s 默认启动需要的 K8s 镜像,差不多就需要占用 4-6 G 的空间,如果运行 etcd, 那么 SD 卡这种边缘场景常见的存储是无法满足的。 关于网络模型,近期 K3s 也添加了和 tailscale 整合 的功能以进一步简化网络模型。但是 K8s 自带的 主机网络/Service IP/Cluster IP 是绕不过去的。

这两个,相比 k3s 都更轻量。而且对网络要求不高,甚至所有设备可以只用一套 server 端管理。

网络模型也很简单,主机网络就行。

此外,这两个针对物联网场景还有特殊优化,如 网络单向联通;边缘端断线情况下优化;支持管理非 docker 资源等等。

Rancher + K3s 模型在边缘存在的问题

在实际应用中,Rancher + K3s 的边缘部署架构如下:

Rancher + K3s 边缘架构

Rancher + K3s 落地案例

落地案例更明显:

  • 1 套:“云”中部署一套 Rancher 集群,Rancher 负责管理下属所有的“边”中的 K3s 集群,Rancher 集群中同时可以部署云端的业务应用,负责和边缘侧业务系统同步, 以及下发数据或指令。
  • N 套:"边" 设备中安装 K3s,K3s 中部署“边”的业务应用,供“端”连接使用。🐾这里一个"边"就是需要一套 K3s 集群的,也就是说既有 K3s Worker, 也有 K3s Master.
  • “端”作为业务应用的最边缘端,通过网络连接“边”,完成业务组网,形成以“边”为中心的业务应用。

这样的架构在实际应用中,存在什么问题呢?

"边"端存储容量

很多边端设备只有 8G 存储,除去系统和一些必要的软件包,空间就剩 4 - 6 G 了,而且 K8s 是对存储空间有强制 GC 的。那么极端情况下,可能 K3s master 都 pull 不下来完整的镜像包,导致系统报错,K3s 启动失败。

"边"端存储性能不足

"边"端存储主要是 SD 卡或 emmc 存储,如果下边挂载较多 K3s worker. K3s Master 还面临存储性能 IO 不足的情况。

"边"端 K3s Master 和 Worker 对网络要求高

由于 K3s 是完全兼容 K8s 的,而 K8s 的 watch-list 机制是为稳定的数据中心场景设计的。在边端,也对网络要求很高。但是这在边端是不可能的情况,在实践中,边端出现:

  • Master 和 Worker 长时间不通
  • Master 和 Worker 时不时不通
  • Worker 长时间离线
  • DNS 网络异常
  • Master 能连 Worker, Worker 连不到 Master
  • Master 不能连 Worker, Worker 能连 Master
  • Master 和 Worker 间带宽很小
  • Master 和 Worker IP 地址变动
  • ...

各种各样网络不稳定的情况太常见了,以上任何一种情况,都可能导致 K3s worker 上应用异常、K3s master 异常甚至整个 K3s 边端集群异常。

这一点是基于 K8s 的边缘架构存在的最大问题

"云"端和"边"端对网络要求也高 异常后无法自愈

"云"端和"边"端是通过 Rancher 的 Agent 来连接的,走的是 websocket 协议。

但是实际应用中,还是发现"云"端和"边"端对网络要求也高,"云"端要管理"边"端,是有大量的数据要实时同步的,网络出现异常后,也会导致"边"端离线,无法自愈重连。

"边"端自愈能力差

因为"边"端复杂的网络情况与 K8s 架构的不相容,导致实际应用中,"边"端自愈能力很差。

在"边"端异常的情况下,十有八九都是需要人工登录边端处置恢复的。

"边"端对 CPU 和 内存资源要求也高

"边"端是一套完整的 K8s 集群,那么这些服务都是需要启动的:

  • etcd 或 K3s kine + sqlite
  • k8s api server
  • k8s scheduler
  • k8s 各种 controller
  • CRI: 容器运行时 containerd
  • CNI: 网络插件
  • CSI: 至少也是 local-path pod
  • CoreDNS
  • Metrics Server
  • Ingress: Traefik
  • kubelet
  • kubeproxy

除了这些 pod, 还需要主机级别的服务:

  • IPTables 或 nftables
  • Netfilter
  • Overlay fs
  • ...

这么一大堆 Pod 和服务都要启动,对边缘端的 CPU 和 内存资源也是巨大的消耗。

"边"端网络模型复杂

还是 K8s 带来的问题,"边"端是一套完整的 K8s/k3s 集群,那么"边"端网络模型自然包括:

  • Host Network
  • Service Network
  • Cluster Network
  • DNS

要实现 K8s CNI 模型,又会引入 overlay 网络。

甚至为了实现"云" "边" "端" 的联通,可能还需要引入:

  • 隧道网络
  • 边缘网关网络
  • ...

进一步提升了网络的复杂性!

导致出现问题非常难以处理,简单问题复杂化。

小结

Rancher + K3s, 在边缘计算场景下的网络拓扑架构是:

  • 1 套:“云”中部署一套 Rancher 集群,Rancher 负责管理下属所有的“边”中的 K3s 集群,Rancher 集群中同时可以部署云端的业务应用,负责和边缘侧业务系统同步, 以及下发数据或指令。
  • N 套:"边" 设备中安装 K3s,K3s 中部署“边”的业务应用,供“端”连接使用。🐾这里一个"边"就是需要一套 K3s 集群的,也就是说既有 K3s Worker, 也有 K3s Master.
  • “端”作为业务应用的最边缘端,通过网络连接“边”,完成业务组网,形成以“边”为中心的业务应用。

K3s 是基于 K8s 的兼容实现,同时因为网络拓扑架构,导致这种架构存在以下问题:

  • "边"端存储容量不足
  • "边"端存储性能不足
  • "边"端无法满足 K3s Master 和 Worker 对网络的高要求
  • "云"端和"边"端对网络要求也过高 异常后无法自愈
  • "边"端自愈能力差
  • "边"端对 CPU 和 内存资源要求也高
  • "边"端网络模型复杂

而且每个问题几乎无解。

边缘计算场景对容器编排的需求

结合上述场景,我理解的边缘计算场景对容器编排的需求:

  • "边"端最好一个 agent, 不要引入过多其他镜像资源,也不要引入过多其他组件
  • 资源占用轻量,agent CPU 内存 存储都消耗极少
  • 最好统一"云"端管理,"边"端不需要再有一个消耗资源的管理端
  • 弱网环境适应性强
  • 自愈能力强
  • 不要额外再引入其他网络模型,最好能直接基于主机网络运行,也不强依赖 DNS

那么基于 Docker 的边缘容器集群管理方案:

  • HashiCorp Nomad
  • Portainer

就表现地更有优势。

Portainer 边缘计算

Portainer 架构

对于 Edge, Portainer 有专门优化,可以参考左侧的 Edge 架构。

  • "云"端负责管理,portainer server 位于云端
  • "边"端都是 Edge Agent
  • "云" "边"不需要双向通信,而是"边"端通过直连或隧道定期去 Server 端 pull 信息

以上是针对网络模型的优化,使其更适合边缘计算的场景。

另外,Poratiner 的 Agent 非常轻量级,只使用大约 10MB 的内存,而且边缘端就只需要部署这一个 Agent, 这就是为什么它也可以在硬件资源有限的边缘设备上运行。唯一的依赖就是边缘端需要安装有 Docker.

开源版边缘功能

  • Edge Agent 默认网络策略:pull
  • Edge Compute 相关模块和菜单:
    • Edge Groups: 将一组边缘设备/环境通过静态/动态的方式归为一个 Edge Group, 方便批量管理
    • Edge Stacks: 类似 Docker Compose 的概念,可以将一套边缘服务批量推向一个或所有的 Edge Group
    • Edge Jobs: 类似 crontab 的功能,在边缘端批量运行 job.
  • 边缘应急特性支持:
    • Interl OpenAMT
    • FDO
  • 管理边缘端 OS 层文件系统(通过 docker linux socket 实现)

通过这些功能,Portainer 可以:

  • 边缘端通过 pull 心跳在复杂网络条件下保持与 Portainer Server 的联通和受管
  • 通过 Edge Compute 的 Edge Groups/Edge Stacks/Edge Jobs 模块,实现对边缘端的批量服务部署和 job 部署

但是开源版相比商业版,阉割的功能较多,比如开源版无法实现一键批量 onboarding 等重要边缘功能。

商业版额外功能

  • 一键 onboaring: 边缘设备一键批量安装
  • 安全通信:在复杂网络条件下,离线条件下,实现基于隧道的连接。
  • Edge Devices: 边缘设备管理
  • Waiting Room: 等候室,有选择地连接请求接入 server 端的边缘设备

小结

个人认为,相比 Rancher + k3s 的方案,portainer 的边缘计算解决方案有以下突出优势:

  • 资源占用少
  • 网络模型针对边缘网络优化

更详细来说,这些功能特性相比 Rancher + K3s 的更适合边缘场景:

  • "云"端 Server, "边"端只有 Agent
  • Edge Agent 轻量,运行内存 10MB 左右
  • Edge Agent pull 模型,针对边缘网络适应性强
  • 没有引入其他网络模型,也不强依赖 DNS

但是,开源版 portainer 也存在明显的功能缺失,最主要的功能缺失是:

  • 一键 onboaring: 边缘设备一键批量安装

的功能。

HashiCorp Nomad 边缘计算

Nomad 边缘参考架构

HashiCorp Nomad 自 1.3 版本以来,针对边缘端增加了很多实用功能:

  • 1.3 引入:Nomad 原生服务发现(简单场景下不再需要 Consul 组件)
  • 1.4 引入:
    • 健康检查
    • Nomad Variables(简单场景下不再需要 Vault 组件)
  • 1.5 引入:
    • 节点动态元数据,更方便 Node 动态管理
  • 1.6 引入:
    • Node Pool 节点池概念,更方便节点批量管理

使得其在边缘端,不再需要依赖:

  • Cosul
  • Vault

这 2 个组件,仅通过 Nomad Agent 就可以实现边缘端的:

  • 容器编排管理
  • 基本服务发现和管理
  • 变量参数/环境变量/配置管理

等功能。

与 Portainer 类似,其在边缘端也只有一个 Edge Agent. 内存占用也仅为 20-40 MB 左右。

Nomad 支持地理上遥远的客户端,这意味着 Nomad 服务器集群不需要在客户端附近运行。(K8s 就做不到这样。)

此外,断开连接的客户端的 allocations (分配) 可以正常重新连接,处理边缘设备遇到网络延迟或临时连接丢失的情况。

这里特别提到 Nomad 的 2 个参数:

max_client_disconnect

如果不设置此属性,Nomad 将运行其默认行为:当 Nomad 客户机的心跳失败时,Nomad 将把该客户机标记为停机 (down),并把 allocations 分配标记为丢失 (lost)。Nomad 将自动在另一个客户端上安排新的分配。但是,如果关闭的客户端重新连接到服务器,它将关闭其现有的分配。这是次优的,因为 Nomad 将停止在重新连接的客户端上运行分配,只是为了放置相同的分配。(K8s 的行为也是,且只能是这样。)

对于许多边缘工作负载,特别是具有高延迟或不稳定网络连接的工作负载,这是破坏性的,因为断开连接的客户端并不一定意味着客户端关闭。Allocations 可以继续在临时断开连接的客户端上运行。对于这些情况,就需要设置 max_client_disconnect 属性,以正常处理断开连接的客户端分配。

如果设置了 max_client_disconnect ,当客户端断开连接时,Nomad 仍将在另一个客户端上安排分配。但是,当客户端重新连接时:

  • Nomad 将重新连接的客户端标记为就绪 (ready)。
  • 如果有多个作业版本,Nomad 将选择最新的作业版本并停止所有其他分配。
  • 如果 Nomad 将丢失的分配重新调度到新客户端,并且新客户端具有更高的节点等级,则 Nomad 将继续新客户端中的分配并停止所有其他客户端。
  • 如果新客户端具有更差的节点排名或存在平局,则 Nomad 将恢复重新连接的客户端上的分配并停止所有其他客户端。

这是具有高延迟或不稳定网络连接的边缘工作负载的首选行为,尤其是在断开分配是有状态的情况下。

举例来说:

在某一个边缘设备中运行有 1 个 web 服务,此时,边缘设备与 (边缘容器管理的) Server 端断开连接

  • 在 K8s 中,就是 Node Unknown 或 NotReady 的状态,会认为 web 服务已宕机,会在另外一台边缘设备中启动 web 服务;在恢复连接后,发现最新的实例是在另一台边缘设备中,那么前一台设备的服务会被关闭。对于使用该 web 的用户来说,可能就是在边缘设备重新连接到 (边缘容器管理的) Server 端后发现 web 服务异常(被管理端关闭)
  • 在启用该参数的 Nomad 中,Node 会是 lost 状态,分配的服务会是 Unknown 状态。会在另外一台边缘设备中启动 web 服务;在恢复连接后,发现 web 服务正常运行,关闭后启动的 web 服务。对于使用该 web 的用户来说,体验是一直没有中断的。

Template change_mode

另外还有一个参数,是 Template 块下的 change_mode

将 Template 节 change_mode 设置为 noop。默认情况下, change_mode 设置为 restart ,如果您的客户端无法连接到 Nomad 服务器,这将导致任务失败。由于 Nomad 在边缘数据中心上调度此作业,因此如果边缘客户端与 Nomad 服务器断开连接(从而断开服务发现),则服务将使用先前的模板配置。

小结

个人认为,相比 Rancher + k3s 的方案,HashiCorp Nomad 的边缘计算解决方案有以下突出优势:

  • 资源占用少 - 边缘只有 Nomad Agent
  • 管理端和 Agent 端可以物理距离很远 - 天南地北的所有边缘设备可以通过一个云端中心来管理
  • 相关参数针对边缘网络优化 - 如 max_client_disconnect

更详细来说,这些功能特性相比 Rancher + K3s 的更适合边缘场景:

  • "云"端 Server, "边"端只有 Agent
  • Nomad Agent 轻量,运行内存 20-40MB 左右
  • Nomad Agent 与 Server 心跳检测是基于 pull 模型,针对边缘网络适应性强
  • 专为边缘设计的 max_client_disconnect 参数
  • 没有引入其他网络模型,也不强依赖 DNS

另外,相比开源版 portainer, Nomad 还有一重优势,即:

  • 一键 onboaring: 边缘设备一键批量安装甚至是预安装

得益于 Nomad 的良好架构,其天生是为大规模容器编排而设计的,可以做到使用 Terraform 或 Ansible 一键批量部署,甚至是预安装(烧录). 典型如 Nomad Agent 配置,统一如下:

data_dir  = "/opt/nomad/data"
bind_addr = "0.0.0.0"

client {
  enabled = true
  servers = ["<nomad_server_ip_list>"]
}

总结

在 IoT 边缘容器集群管理领域,基于 K8s 的解决方案(包括 Rancher + K3s) 明显不太适应,笔者体验 2 年左右坑太多了,主要原因是:

  • 资源消耗高
  • 网络条件要求高
  • 网络模型复杂
  • 自愈能力差
  • 引入了过多额外组件

但是,HashiCorp Nomad,Portainer 相比 k8s k3s, 在物联网/边缘计算领域是更有优势的。值得一试。因为它们:

  • 轻量:只有一个 Agent 且内存占用极低
  • 针对边缘网络做了特殊优化
  • 没有引入复杂网络模型(如 Service Network, Pod Network, Overlay Network..., 主要依赖 Host Network, 容器端口映射,顶多多一个 bridge 网络), 不依赖 DNS
  • 自愈能力强
  • 没有引入了过多额外组件,就多了一个 Agent

我个人更推荐使用 Nomad (小规模/家庭场景可以使用 Portainer).

以上.

如果您有更好的经验, 欢迎交流探讨~

三人行, 必有我师; 知识共享, 天下为公. 本文由东风微鸣技术博客 EWhisper.cn 编写.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/935561.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(java) 进程调度

目录 进程 首先我们要了解一下什么是进程&#xff1f; 那如何管理进程&#xff1f; PCB中比较重要的属性 进程调度 为什么要进行进程调度&#xff1f; 状态 优先级 上下文 拓展介绍一下寄存器 记账信息 进程 首先我们要了解一下什么是进程&#xff1f; 简单来说…

window下jdk安装及更换jdk版本的一些问题。

目录 jdk安装jdk的选择。oracle的jdk怎么安装。openjdk怎么安装。 jdk的版本控制。更换jdk的一些问题。 jdk安装 jdk的选择。 目前有两种可选的jdk&#xff0c;oracle的和开源的Openjdk&#xff0c;这两种jdk的区别可以自行查阅&#xff0c;就结果而言&#xff0c;openjdk开源…

2023年浙大MEM提面/复试录取考生笔试成绩分布图一览

如果真要给备战浙大mem项目一个理由的话&#xff0c;我想本文的两张图基本算是之一吧&#xff01;几乎每年的上半年时间里&#xff0c;浙江本省连带附近一些省市的考生对浙大mem项目的报考热情都很满&#xff0c;但经历过八月提面之后&#xff0c;部分考生可能会因为提面的结果…

在安装pyhttpx过程中:ImportError: DLL load failed: 找不到指定的模块。

错误 ImportError: DLL load failed: 找不到指定的模块。 解决方案 我先尝试着去重新安装了下brotli 但是并没有成功 最终解决 安装 vc_redist.x64.exe 下载地址&#xff1a;https://learn.microsoft.com/en-GB/cpp/windows/latest-supported-vc-redist?viewmsvc-170 如果…

什么是 TF-IDF 算法?

简单来说&#xff0c;向量空间模型就是希望把查询关键字和文档都表达成向量&#xff0c;然后利用向量之间的运算来进一步表达向量间的关系。比如&#xff0c;一个比较常用的运算就是计算查询关键字所对应的向量和文档所对应的向量之间的 “相关度”。 简单解释TF-IDF TF &…

【Java基础增强】Stream流

1.Stream流 1.1体验Stream流【理解】 案例需求 按照下面的要求完成集合的创建和遍历 创建一个集合&#xff0c;存储多个字符串元素 把集合中所有以"张"开头的元素存储到一个新的集合 把"张"开头的集合中的长度为3的元素存储到一个新的集合 遍历上一步得…

打架斗殴行为识别算法

打架斗殴行为识别算法通过yolov7网络模型深度学习算法&#xff0c;打架斗殴行为识别算法对提取到的信息进行分析和比对&#xff0c;判断是否存在打架斗殴行为。打架斗殴行为识别算法一旦打架斗殴行为识别算法识别到打架斗殴行为&#xff0c;系统会立即生成预警信息&#xff0c;…

java八股文面试[多线程]——为什么不能用Excuters创建线程池

DelayedWorkQueue 也是一个无界队列。 如何根据实际需要&#xff0c;定制自己的线程池&#xff1a; 知识点&#xff1a; 【并发与线程】为什么大厂规定不能使用Executors去创建线程池&#xff1f;_哔哩哔哩_bilibili 【并发与线程】如何根据实际需要&#xff0c;定制自己的线…

uniapp iOS打包证书申请流程——window

uniapp 如何在 window 创建 iOS打包证书&#xff1f; 文章目录 uniapp 如何在 window 创建 iOS打包证书&#xff1f;下载 Appuploader安装创建证书相关入口创建证书创建描述文件运行调试账号过期提示 前提&#xff1a; 下载 Appuploader工具 Appuploader辅助工具&#xff0c;解…

<七> objectARX开发:创建自定义实体

1、介绍 在某些情况下,CAD中的实体对象无法满足需求,我们需要针对实际情况来设计并绘制自定义的实体,下面就用一个简单的例子来介绍一下自定义实体绘制。 实体形状:包括实体夹点和文字夹点拖动实现。 2、效果 3、创建自定义实体的步骤 新建一个从AcDbEntity继承的类,如C…

从传统软件开发到云原生转型:大数据和AI如何引领软件开发的新趋势

文章目录 **1. 数据驱动的开发&#xff1a;****2. 智能化的用户体验&#xff1a;****3. 云原生的可扩展性&#xff1a;****4. 实时处理和决策&#xff1a;****5. 自动化和效率提升&#xff1a;****6. 持续集成和交付的加速&#xff1a;****7. 数据安全和隐私&#xff1a;****8.…

linux和python轻松实现短信和邮件的秒发!四大实战脚本大揭秘!

引言 作为Linux和Python技术持续学习者&#xff0c;我们不仅要了解基础知识&#xff0c;还需要实际运用技术解决问题。本文将分享四个实用的Python和Linux运维脚本&#xff0c;帮助我们轻松实现短信和邮件的秒发功能。 要求环境 一台运行Linux操作系统的服务器&#xff08;可以…

【Qt学习】02:信号和槽机制

信号和槽机制 OVERVIEW 信号和槽机制一、系统自带信号与槽二、自定义信号与槽1.基本使用student.cppteacher.cppwidget.cppmain.cpp 2.信号与槽重载student.cppteacher.cppwidget.cppmain.cpp 3.信号连接信号4.Lambda表达式5.信号与槽总结 信号槽机制是 Qt 框架引以为豪的机制之…

Yolo系列-yolov2

YOLO-V2 更快&#xff01;更强&#xff01; YOLO-V2-BatchNormalization BatchNormalization&#xff08;批归一化&#xff09;是一个常用的深度神经网络优化技术&#xff0c;它可以将输入数据进行归一化处理&#xff0c;使得神经网络更容易进行学习。在YOLOv2中&#xff0c;B…

C++学习记录——이십칠 C++11(3)

文章目录 1、lambda1、捕捉列表2、简述C线程3、lambda对象大小 2、C线程1、整体了解2、锁1、互斥锁2、递归互斥锁3、时间控制锁4、lock_guard 3、atomic&#xff08;原子&#xff09;4、条件变量 1、lambda 在之前写排序时&#xff0c;用到过排升序&#xff0c;排降序&#xf…

leetcode438. 找到字符串中所有字母异位词(java)

滑动窗口 找到字符串中所有字母异位词滑动窗口数组优化 上期经典 找到字符串中所有字母异位词 难度 - 中等 Leetcode 438 - 找到字符串中所有字母异位词 给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词 的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出…

msvcp140.dll丢失的解决方法,win10系统dll报错的解决方法

今天&#xff0c;我将为大家分享一个关于msvcp140.dll丢失的解决方法&#xff0c;特别是针对在Windows 10系统上遇到这个问题的朋友们。在开始之前&#xff0c;我想先简要介绍一下msvcp140.dll文件的作用。msvcp140.dll是Microsoft Visual C运行时库的一部分&#xff0c;它包含…

基于Java+SpringBoot+Vue前后端分离智慧图书管理系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

【【萌新的STM32学习-18 中断的基本概念3】】

萌新的STM32学习-18 中断的基本概念3 EXTI和IO映射的关系 AFIO简介&#xff08;F1&#xff09; Alternate Function IO 复用功能IO 主要用于重映射和外部中断映射配置 1.调试IO配置 来自AFIO_MAPR[26:24] , 配置JTAG/SWD的开关状态 &#xff08;这个我们并不用太过深刻的关注&…

使用实体解析和图形神经网络进行欺诈检测

图形神经网络的表示形式&#xff08;作者使用必应图像创建器生成的图像&#xff09; 一、说明 对于金融、电子商务和其他相关行业来说&#xff0c;在线欺诈是一个日益严重的问题。为了应对这种威胁&#xff0c;组织使用基于机器学习和行为分析的欺诈检测机制。这些技术能够实时…