基于LOF算法的异常值检测

news2024/11/16 16:00:52

目录

  • LOF算法简介
  • Sklearn官网LOF算法应用实例1
  • Sklearn官网LOF算法应用实例2
  • 基于LOF算法鸢尾花数据集异常值检测
    • 读取数据
    • 构造数据
    • 可视化,画出可疑异常点
    • LOF算法

LOF算法简介

LOF异常检测算法是一种基于密度的异常检测算法,基于密度的异常检测算法主要思想是:给定的样本数据集,对于数据集中的点,如果其局部领域的点都很密集,那么这个点大概率为正常的数据点;而如果这个点距离其相邻的点距离较远,也就是在一个局部领域的点密度较小,那么这个点可能为异常点。

Sklearn官网LOF算法应用实例1

在这里插入图片描述
clf.negative_outlier_factor_输出:array([ -0.98214286, -1.03703704, -73.36970899, -0.98214286])
绝对值越大于1则越有可能是异常。很明显101.1最有可能是异常。

Sklearn官网LOF算法应用实例2

导入包:
在这里插入图片描述
构造二维数据,以及一些离群点,并可视化:
在这里插入图片描述
LOF算法:
在这里插入图片描述
根据X_scores可视化,红色圈越大,该点越可能是异常点:
在这里插入图片描述

基于LOF算法鸢尾花数据集异常值检测

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.neighbors import LocalOutlierFactor
from sklearn.datasets import load_iris
matplotlib.rcParams['font.sans-serif']=['SimHei']   # 用黑体显示中文
%matplotlib inline

读取数据

iris_data = load_iris()
iris_data.data[0:5,:]
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2]])
# 数据规模
iris_data.data.shape
(150, 4)
# 特征
iris_data.feature_names
['sepal length (cm)',
 'sepal width (cm)',
 'petal length (cm)',
 'petal width (cm)']
# 查看类别
pd.DataFrame(iris_data.target).value_counts(), iris_data.target_names
(0    50
 1    50
 2    50
 dtype: int64,
 array(['setosa', 'versicolor', 'virginica'], dtype='<U10'))

构造数据

这里为方便可视化,只选取iris数据集中 ‘sepal width (cm)’ 和 ‘petal width (cm)’ 两个特征

data = iris_data.data[:, [1, 3]]
data = pd.DataFrame(data, columns=iris_data.feature_names[1:4:2])#['sepal width (cm)','petal width (cm)']
data.head()
sepal width (cm)petal width (cm)
03.50.2
13.00.2
23.20.2
33.10.2
43.60.2

可视化,画出可疑异常点

# 可视化两个特征'sepal width (cm)','petal width (cm)'
data.plot(kind="scatter", x="sepal width (cm)", y="petal width (cm)", c='r', figsize=(6,2))

## 圈出可疑的异常点
plt.plot(2.3, 0.3, "ko", markersize=20, markerfacecolor="none")
plt.annotate("可能异常点", xy=(2.3, 0.48), xytext=(2, 0.75), arrowprops=dict(facecolor="blue"))

plt.plot(3.8, 2.1, "ko", markersize=30, markerfacecolor="none")
plt.annotate("可能异常点", xy=(3.9, 1.9), xytext=(4, 1.5), arrowprops=dict(facecolor="blue"))

plt.plot(4.4, 0.4, "ko", markersize=20, markerfacecolor="none")
plt.annotate("可能异常点", xy=(4.3, 0.5), xytext=(4.5, 1), arrowprops=dict(facecolor="blue"))
Text(4.5, 1, '可能异常点')

在这里插入图片描述

LOF算法

lof = LocalOutlierFactor(n_neighbors=30, metric="minkowski")
outlier_pre = lof.fit_predict(data.values)
"异常值数量:%d"%np.sum(outlier_pre==-1)
'异常值数量:7'
# 异常点
data[outlier_pre==-1]
sepal width (cm)petal width (cm)
154.40.4
334.20.2
412.30.3
602.01.0
1093.62.5
1173.82.2
1313.82.0
scores = lof.negative_outlier_factor_# negative_outlier_factor_数值越大越正常;数值越小越不正常,可能是离群点

scores = (scores.max()-scores)/(scores.max()-scores.min())
data.plot(kind="scatter", x="sepal width (cm)", y="petal width (cm)", c='r', figsize=(6,2))
plt.scatter(data["sepal width (cm)"], data["petal width (cm)" ], s=800*scores, edgecolors='k', facecolor="none",label="score")

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/935172.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Centos7安装ZK-UI管理界面安装|Maven|Git|

一: JDK1.8安装 参考: Centos7卸载|安装JDK1.8|Xshell7批量控制多个终端 二&#xff1a;Maven安装 2.1&#xff1a;下载maven安装包 maven 下载地址&#xff1a;https://mirror.bit.edu.cn/apache/maven/maven-3/ [rootwww ~]# mkdir -p /usr/local/maven [rootwww ~]# …

【C/C++】多态的概念 | 虚函数 | 虚函数指针

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c系列专栏&#xff1a;C/C零基础到精通 &#x1f525; 给大…

Linux操作系统--vi/vim编辑器

1.Vi/Vim简介 Vi 是 Unix 操作系统和类 Unix 操作系统中最通用的文本编辑器。 VIM 编辑器是从 VI 发展出来的一个性能更强大的文本编辑器。可以主动的以字体颜色辨别语法的正确性,方便程序设计。VIM 与 VI 编辑器完全兼容。这里简单的理解为如果你需要使用指令取操作Linux系…

【LeetCode-中等题】142. 环形链表 II

文章目录 题目方法一&#xff1a;哈希表set去重方法二&#xff1a;快慢指针 题目 方法一&#xff1a;哈希表set去重 思路&#xff1a;我们遍历链表中的每个节点&#xff0c;并将它记录下来&#xff1b;一旦遇到了此前遍历过的节点&#xff0c;就可以判定链表中存在环。借助哈希…

nonlocal关键字声明

nonlocal关键字声明 作用 使得内层函数可以使用/修改外层函数的变量 值得注意的是&#xff0c;在未使用nonlocal声明时 对于外层函数中的可变对象&#xff0c;内层函数即可访问&#xff0c;也可以修改 def outer():x, y [1], [2]def inner(z):x.append(1)print(x)print(z)r…

英特尔oneAPI人工智能黑客松 - 坚果识别实战

写在前面&#xff1a;博主是一只经过实战开发历练后投身培训事业的“小山猪”&#xff0c;昵称取自动画片《狮子王》中的“彭彭”&#xff0c;总是以乐观、积极的心态对待周边的事物。本人的技术路线从Java全栈工程师一路奔向大数据开发、数据挖掘领域&#xff0c;如今终有小成…

Ubuntu断电重启后黑屏左上角光标闪烁,分辨率低解决办法,ubuntu系统display只有4:3 怎么办?太卡

这个问题主要是显卡驱动问题&#xff0c;按照步骤更新显卡驱动 1&#xff0c;选择metapackage 并且选择proprietary版本&#xff0c;选择版本号选择最新的版本。 2&#xff0c;具体步骤参考 前言 笔者在安装显卡驱动时并未遇到问题&#xff0c;主要是后续屏幕亮度无法调节&…

qt在线包下载安装出错 无法检索远程树

我的问题好像是在安装Qt5.15.2出现的。 我的情况是由于网络问题问题&#xff0c;设置开启了本机的代理之后&#xff0c;就可以正常下载了。

STM32F103 USB OTA升级APP (二)

接上一篇STM32F103 USB OTA升级BootLoader (一)&#xff1a;跳转链接 修改程序启动地址和Flash大小 修改main.c代码 #include "main.h" #include "usart.h" #include "usb_device.h" #include "gpio.h" #include "Update.h&quo…

空时自适应处理用于机载雷达——空时处理基础知识(Matla代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

基于STM32CUBEMX驱动TMOS模块STHS34PF80(6)----获取状态数据

基于STM32CUBEMX驱动TMOS模块STHS34PF80----6.获取状态数据 概述视频教学样品申请参考Demo参考程序获取数据获取数据标志位使用数据准备就绪信号嵌入式智能数字算法的输出数据主程序 概述 STHS34PF80传感器项目种修改 Arduino 脚本&#xff0c;重新移植到STM32的MCU中。 该项目…

PAT 1127 ZigZagging on a Tree

个人学习记录&#xff0c;代码难免不尽人意。 Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine t…

Experience Design(XD)软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 Experience Design&#xff08;XD&#xff09;是Adobe公司开发的一款用户体验设计工具&#xff0c;广泛应用于网页设计、移动应用设计、交互设计等领域。以下是XD软件的主要特点和功能&#xff1a; 界面设计&#xff1a;XD提供…

android2022配置opencv4android480

1&#xff0c;安装android studio2022。 2&#xff0c;下载OPENCV4ANDROID&#xff0c;解压到任意盘中。 3&#xff0c;File->New->New Project&#xff0c;选择Empty Views Activity。再选择语言&#xff0c;本文选择JAVA。 4&#xff0c;File->New->Import Modu…

白嫖idea

白嫖idea 地址 https://www.jetbrains.com/toolbox-app/

Spark中join和cogroup

笔者最近在复习spark&#xff0c;发现对cogroup算子掌握不牢固。因此写下这篇博客&#xff0c;方便以后学习。 join算子 join算子相当于将两个rdd进行内连接&#xff0c;在join的结果中&#xff0c;返回值是key和元组 cogroup算子 cogroup算子相当于将两个rdd中 相同键的每…

LeetCode538. 把二叉搜索树转换为累加树

538. 把二叉搜索树转换为累加树 文章目录 [538. 把二叉搜索树转换为累加树](https://leetcode.cn/problems/convert-bst-to-greater-tree/)一、题目二、题解方法一&#xff1a;递归&#xff08;中序遍历与节点更新&#xff09;方法二&#xff1a;反向中序遍历与累加更新&#x…

作业人员护目镜佩戴自动识别

作业人员护目镜佩戴自动识别通过pythonyolo深度学习算法模型&#xff0c;作业人员护目镜佩戴自动识别利用布设摄像头并结合图像算法能够实时监测作业人员是否佩戴护目镜。一旦发现未佩戴的情况立即发出警告&#xff0c;并及时记录异常情况。在YOLOv1提出之前&#xff0c;R-CNN系…

iPhone手机如何删除照片应用程序的文稿与数据

场景&#xff1a;iPhone使用多年&#xff08;穷没钱换新的&#xff09;照片视频一直没有删除&#xff0c;最近打开微信提示空间不足&#xff0c;删除100多G照片后&#xff0c;照片应用程序的文稿与数据仍然100G没有变化。 不想重置手机&#xff0c;处理方法如下&#xff0c;PC端…

.netcore发布独立版部署

.NetCore 在发布独立版时会打包独立环境&#xff0c;就算服务没有安装环境也能运行&#xff0c;这就是.NetCore跨平台的特性之一。 按照微软的传统配套&#xff0c;c#开发的项目一般都是发布打包程序部署在iis&#xff0c;但是.netcore 跨平台的&#xff0c;就是说当发布独立版…