Mycat之前世今生

news2025/1/18 20:11:43

如果我有一个32核心的服务器,我就可以实现1个亿的数据分片,我有32核心的服务器么?没有,所以我至今无法实现1个亿的数据分片。——MyCAT ‘s Plan

话说“每一个成功的男人背后都有一个女人”,自然MyCAT也逃脱不了这个诅咒,MyCAT背后是阿里曾经开源的知名产品——Cobar,核心功能和优势是MySQL数据库分片,此产品曾经广为流传,据说最早的发起者对Mysql很精通,后来从阿里跳槽了,阿里随后开源的Cobra,并维持到2013年年初,然后,就没有然后了。

Cobra的确做的很不错,基于Java,实现了MySQL二进制协议,因此可以将自己伪装成一个MySQL Server,并且很多MySQL客户端都能访问,这个做法很好,比自己实现一个新的数据库协议要明智的多,因为生态环境在哪里摆着。

由于是Java开发的,下载下来解压,只要配置几个不是很复杂的配置文件,猛击鼠标,就能启动Cobra,因此这个开源产品赢得了很多Java粉丝的追捧,当然,笨人也跟着进入,并且在某个大型云项目中——“苦海无边”的煎熬过。

爱情就像是见鬼,你根本不知道鬼是怎样的,只有撞见鬼以后,你才真正明白,什么是爱情。爱情也会很快褪色,你不会告诉TA你不好的地方,你会拼命将你的优点无限放大,就差把自己当成世界上第二伟大的人了。相信每个用过Cobra的人都经历了这样的过程,围城里的人已经出不来了,但还有更多的人拼命想挤进来。

仅以此文,献给哪些努力在IT界寻求未来的精英们以及小白们,还有更多被无视的,就差要打算转行的同仁人,同在江湖混,不容易啊,面试时候就装装糊涂,放人家一马,说不定,以后又是一个Made  in China的乔布斯啊。

关于Cobra的十个秘密

第一个秘密:纳尼,Cobra会假死?

Cobra的确会假死,很多人遇到这个问题,如何简单的来验证这点呢?我们来做个小实验,假如你的分片表中配置有表company,则打开mysql终端,执行下面的SQL:

select sleep(500) from company;

此SQL会执行等待500秒,你再努力以最快的速度打开N个mysql终端,都执行相同的SQL,确保N>当前Cobra的执行线程数:show @@threadpool的所有Processor1-E的线程池的线程数量总和,然后你再执行任何简单的SQL,或者试图新建立连接,都会无法响应,此时show @@threadpool里面看到TASK_QUEUE_SIZE已经在积压中。

不可能吧,据说Cobra是NIO的非阻塞的,怎么可能阻塞!别激动,去看看代码,Cobra前端是NIO的,而后端跟Mysql的交互,是阻塞模式,其NIO代码只给出了框架,还未来得及实现。真相永远在代码里,所以,为了发现真相,还是转行去做码农吧,貌似码农也像之前的技术工人,越来越稀罕了。

第二个秘密:高可用的陷阱?

每一个秘密的背后,总是隐藏着更大的秘密。Cobra假死的的秘密背后,还隐藏着一个更为“强大”的秘密,那就是假死以后,Cobra的频繁主从切换问题。我们看看Cobra的一个很好的优点——“高可用性”的实现机制,下图解释了Cobra如何实现高可用性:

 

分片节点dn2_M1配置了两个dataSource,并且配置了心跳检测(heartbeat)语句,在这种配置下,每个dataNode会定期对当前正在使用的dataSource执行心跳检测,默认是第一个,频率是10秒钟一次,当心跳检测失败以后,会自动切换到第二个dataSource上进行读写,假如Cobra发生了假死,则在假死的1分钟内,Cobra会自动切换到第二个节点上,因为假死的缘故,第二个节点的心跳检测也超时。于是,1分钟内Cobra频繁来回切换,懂得MySQL主从复制机制的人都知道,在两个节点上都执行写操作意味着什么?——可能数据一致性被破坏,谁也不知道那个机器上的数据是最新的

还有什么情况下,会导致心跳检测失败呢?这是一个不得不说的秘密:当后端数据库达到最大连接后,会对新建连接全部拒绝,此时,Cobar的心跳检测所建立的新连接也会被拒绝,于是,心跳检测失败,于是,一切都悄悄的发生了。

幸好,大多数同学都没有配置高可用性,或者还不了解此特性,因此,这个秘密,一直在安全的沉睡。

第三个秘密:看上去很美的自动切换

Cobar很诱人的一个特性是高可用性,高可用性的原理是数据节点DataNode配置引用两个DataSource,并做心跳检测,当第一个DataSource心跳检测失败后,Cobar自动切换到第二个节点,当第二个节点失败以后,又自动切换回第一个节点,一切看起来很美,无人值守,几乎没有宕机时间。

在真实的生产环境中,我们通常会用至少两个Cobar实例组成负载均衡,前端用硬件或者HAProxy这样的负载均衡组件,防止单点故障,这样一来,即使某个Cobar实例死了,还有另外一台接手,某个Mysql节点死了,切换到备节点继续,至此,一切看起来依然很美,喝着咖啡,听着音乐,领导视察,你微笑着点头——No problem,Everything is OK!直到有一天,某个Cobar实例果然如你所愿的死了,不管是假死还是真死,你按照早已做好的应急方案,优雅的做了一个不是很艰难的决定——重启那个故障节点,然后继续喝着咖啡,听着音乐,轻松写好故障处理报告发给领导,然后又度过了美好的一天。

         你忽然被深夜一个电话给惊醒,你来不及发火,因为你的直觉告诉你,这个问题很严重,大量的订单数据发生错误很可能是昨天重启cobar导致的数据库发生奇怪的问题。你努力排查了几个小时,终于发现,主备两个库都在同时写数据,主备同步失败,你根本不知道那个库是最新数据,紧急情况下,你做了一个很英明的决定,停止昨天故障的那个cobar实例,然后你花了3个通宵,解决了数据问题。

         这个陷阱的代价太高,不知道有多少同学中枪过,反正我也是躺着中枪过了。若你还不清楚为何会产生这个陷阱,现在我来告诉你:

  • Cobar启动的时候,会用默认第一个Datasource进行数据读写操作
  • 当第一个Datasource心跳检测失败,会切换到第二个Datasource
  • 若有两个以上的Cobar实例做集群,当发生节点切换以后,你若重启其中任何一台Cobar,就完美调入陷阱

那么,怎么避免这个陷阱?目前只有一个办法,节点切换以后,尽快找个合适的时间,全部集群都同时重启,避免隐患。为何是重启而不是用节点切换的命令去切换?想象一下32个分片的数据库,要多少次切换?

MyCAT怎么解决这个问题的?很简单,节点切换以后,记录一个properties文件( conf目录下),重启的时候,读取里面的节点index,真正实现了无故障无隐患的高可用性。

第四个秘密:只实现了一半的NIO

         NIO技术用作JAVA服务器编程的技术标准,已经是不容置疑的业界常规做法,若一个Java程序员,没听说过NIO,都不好意思说自己是Java人。所以Cobar采用NIO技术并不意外,但意外的是,只用了一半。

         Cobar本质上是一个“数据库路由器”,客户端连接到Cobar,发生SQL语句,Cobar再将SQL语句通过后端与MySQL的通讯接口Socket发出去,然后将结果返回给客户端的Socket中。下面给出了SQL执行过程简要逻辑:

SQL->FrontConnection->Cobar->MySQLChanel->MySQL

         FrontConnection 实现了NIO通讯,但MySQLChanel则是同步的IO通讯,原因很简单,指令比较复杂,NIO实现有难度,容易有BUG。后来最新版本Cobar尝试了将后端也NIO化,大概实现了80%的样子,但没有完成,也存在缺陷。

         由于前端NIO,后端BIO,于是另一个有趣的设计产生了——两个线程池,前端NIO部分一个线程池,后端BIO部分一个线程池。各自相互不干扰,但这个设计的结果,导致了线程的浪费,也对性能调优带来很大的困难。

         由于后端是BIO,所以,也是Cobar吞吐量无法太高、另外也是其假死的根源。

         MyCAT在Cobar的基础上,完成了彻底的NIO通讯,并且合并了两个线程池,这是很大一个提升。从1.1版本开始,MyCAT则彻底用了JDK7的AIO,有一个重要提升。

第五个秘密:阻塞、又见阻塞

         Cobar本质上类似一个交换机,将后端Mysql 的返回结果数据经过加工后再写入前端连接并返回,于是前后端连接都存在一个“写队列”用作缓冲,后端返回的数据发到前端连接FrontConnection的写队列中排队等待被发送,而通常情况下,后端写入的的速度要大于前端消费的速度,在跨分片查询的情况下,这个现象更为明显,于是写线程就在这里又一次被阻塞。

         解决办法有两个,增大每个前端连接的“写队列”长度,减少阻塞出现的情况,但此办法只是将问题抛给了使用者,要是使用者能够知道这个写队列的默认值小了,然后根据情况进行手动尝试调整也行,但Cobar的代码中并没有把这个问题暴露出来,比如写一个告警日志,队列满了,建议增大队列数。于是绝大多数情况下,大家就默默的排队阻塞,无人知晓。

         MyCAT解决此问题的方式则更加人性化,首先将原先数组模式的固定长度的队列改为链表模式,无限制,并且并发性更好,此外,为了让用户知道是否队列过长了(一般是因为SQL结果集返回太多,比如1万条记录),当超过指定阀值(可配)后,会产生一个告警日志。

<system><property name="frontWriteQueueSize">1024</property></system>

第六个秘密:又爱又恨的SQL 批处理模式

         正如一枚硬币的正反面无法分离,一块磁石怎样切割都有南北极,爱情中也一样,爱与恨总是纠缠着,无法理顺,而Cobar的 SQL 批处理模式,也恰好是这样一个令人又爱又恨的个性。

         通常的SQL 批处理,是将一批SQL作为一个处理单元,一次性提交给数据库,数据库顺序处理完以后,再返回处理结果,这个特性对于数据批量插入来说,性能提升很大,因此也被普遍应用。JDBC的代码通常如下:

String sql = "insert into travelrecord (id,user_id,traveldate,fee,days) values(?,?,?,?,?)";
ps = con.prepareStatement(sql);
for (Map<String, String> map : list) {
    ps.setLong(1, Long.parseLong(map.get("id")));
    ps.setString(2, (String) map.get("user_id"));
    ps.setString(3, (String) map.get("traveldate"));
    ps.setString(4, (String) map.get("fee"));
    ps.setString(5, (String) map.get("days"));
    ps.addBatch();
}
ps.executeBatch();
con.commit();
ps.clearBatch();

    Cobar的批处理模式的实现,则有几个地方是与传统不同的:

  • 提交到cobar的批处理中的每一条SQL都是单独的数据库连接来执行的
  • 批处理中的SQL并发执行

并发多连接同时执行,则意味着Batch执行速度的提升,这是让人惊喜的一个特性,但单独的数据库连接并发执行,则又带来一个意外的副作用,即事务跨连接了,若一部分事务提交成功,而另一部分失败,则导致脏数据问题。看到这里,你是该“爱”呢还是该“恨”?

先不用急着下结论,我们继续看看Cobar的逻辑,SQL并发执行,其实也是依次获取独立连接并执行,因此还是有稍微的时间差,若某一条失败了,则cobar会在会话中标记”事务失败,需要回滚“,下一个没执行的SQL就抛出异常并跳过执行,客户端就捕获到异常,并执行rollback,回滚事务。绝大多数情况下,数据库正常运行,此刻没有宕机,因此事务还是完整保证了,但万一恰好在某个SQL commit指令的时候宕机,于是杯具了,部分事务没有完成,数据没写入。但这个概率有多大呢?一条insert insert 语句执行commit指令的时间假如是50毫秒,100条同时提交,最长跨越时间是5000毫秒,即5秒中,而这个C指令的时间占据程序整个插入逻辑的时间的最多20%,假如程序批量插入的执行时间占整个时间的20%(已经很大比例了),那就是20%×20%=4%的概率,假如机器的可靠性是99.9%,则遇到失败的概率是0.1%×4%=十万分之四。十万分之四,意味着99.996%的可靠性,亲,可以放心了么?

另外一个问题,即批量执行的SQL,通常都是insert的,插入成功就OK,失败的怎么办?通常会记录日志,重新找机会再插入,因此建议主键是能日志记录的,用于判断数据是否已经插入。

最后,假如真要多个SQL使用同一个后端MYSQL连接并保持事务怎么办?就采用通常的事务模式,单条执行SQL,这个过程中,Cobar会采用Session中上次用过的物理连接执行下一个SQL语句,因此,整个过程是与通常的事务模式完全一致。

线程池:一个连接要在可用之前,做如下同步指令:

12:34:37.044  DEBUG [Processor1-E3] (MySQLConnection.java:325) -org.opencloudb.mysql.nio.MySQLConnection$StatusSync@15aaf0b3
   need syn schemaCmd MySQL Command Packet{length=0,id=0}
   need syn charCmd MySQL Command Packet{length=0,id=0}
   need syn txIsolationCmd MySQL Command Packet{length=0,id=0}
   need syn autcommitCmd MySQL Command Packet{length=0,id=0}

后端物理连接是有限的,只能一个线程使用,因此,最佳的连接池,是 基于DB Server的,而不是基于DB Server的的某一个database上,另外,为了最有效的获取一个“合适的连接”,需要判断某个空闲连接的上述4个指令是否与想要得到的连接的请求参数“最大匹配”,目前没有研究过开源的其他Java连接池是否有此功效,Mycat中目前已经按照此策略,进行了最大可能的优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/934588.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AI自动驾驶也“区分人种”?有色人种和儿童面临更高碰撞风险

8月27日消息&#xff0c;随着人工智能&#xff08;AI&#xff09;的快速发展&#xff0c;尤其是在自动驾驶汽车领域&#xff0c;这项技术给人类带来了巨大的便利。 然而&#xff0c;据最新的研究发现&#xff0c;自动驾驶汽车中的行人检测软件可能存在一些严重问题&#xff0c;…

章节 3:React.js基础 -《React.js手把手教程:从初学者到实战高手》- 第一部分:React.js基础

《React.js手把手教程&#xff1a;从初学者到实战高手》 第一部分&#xff1a;React.js基础 章节 3&#xff1a;React.js基础 在这一章中&#xff0c;我们将进一步了解 React.js 的基础知识。我们会从最基本的 React 组件开始&#xff0c;逐步引导你进入 React.js 的世界。 …

RocketMQ同步复制和异步复制

如果一个Broker组有Master和Slave&#xff0c;消息需要从Master复制到Slave上&#xff0c;有同步和异步两种复制方式。 1)同步复制 同步复制方式是等Master和Slave均写成功后才反馈给客户端写成功状态&#xff1b; 在同步复制方式下&#xff0c;如果Master出故障&#xff0c…

调用paddleocr接口实现文本检测与识别,并在图像中显示识别结果

目录 一、按照官网步骤安装paddlepaddle和paddleocr(paddlepaddle我安装的是cpu版本) 二、运行下面的脚本 三、图像结果 一、按照官网步骤安装paddlepaddle和paddleocr(paddlepaddle我安装的是cpu版本) doc/doc_ch/quickstart.md PaddlePaddle/PaddleOCR - Gitee.com 二、…

IDEA对Web和Tomcat的一些配置

这里只是做了自己学习中的一点记录&#xff0c;仅供参考哈&#xff01; 配置Tomcat Modules新增Web 新增module后新增Artifacts 新增Artifacts后Tomcat新增布署 将指定的module由普通java项目变成web项目 直接创建布署到Tomcat时所需要的Aritifacts包 配置Servlet的依赖包 配置…

初识【类和对象】

目录 1.面向过程和面向对象初步认识 2.类的引入 3.类的定义 4.类的访问限定符及封装 5.类的作用域 6.类的实例化 7.类的对象大小的计算 8.类成员函数的this指针 1.面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的…

Java进阶篇--创建线程的四种方式

目录 继承Thread类 扩展小知识&#xff1a; Thread类的常见方法 Thread 类的静态方法 实现Runnable接口 使用Callable和Future创建线程 使用Executor框架创建线程池 继承Thread类 创建一个继承自Thread类的子类&#xff0c;并重写其run()方法&#xff0c;将相关逻辑实现…

Flink CDC数据同步

背景 随着信息化程度的不断提高&#xff0c;企业内部系统的数量和复杂度不断增加&#xff0c;因此&#xff0c;数据库系统的同步问题已成为越来越重要的问题。 缓存失效 在缓存中缓存的条目(entry)在源头被更改或者被删除的时候立即让缓存中的条目失效。如果缓存在一个独立的…

“返璞归真,数字排毒”,放下智能手机,美国功能手机卷土重来

近年来&#xff0c;智能手机的普及已经改变了人们的生活方式和沟通方式。然而&#xff0c;随着科技的不断进步和不断涌现的各种新应用程序&#xff0c;一些年轻人开始感到疲惫和厌倦。他们觉得智能手机带来了太多的干扰和依赖&#xff0c;也让人们容易沉迷于社交媒体和短视频。…

Rabbitmq的Federation Exchange

(broker 北京 ) &#xff0c; (broker 深圳 ) 彼此之间相距甚远&#xff0c;网络延迟是一个不得不面对的问题。有一个在北京的业务(Client 北京 ) 需要连接 (broker 北京 ) &#xff0c;向其中的交换器 exchangeA 发送消息&#xff0c;此时的网络延迟很小&#xff0c;(C…

全球边缘计算大会的十大至暗时刻

来源网友X小缘 ① 背景板文字全球边缘计算大会&#xff0c;被广告公司改为全球边缘计算机大会&#xff0c;因为他觉得少了个机字&#xff1b; ② 明天开会&#xff0c;今天遇到恶劣天气&#xff0c;讲师主持人一整晚滞留外地机场&#xff1b; ③ 视频直播的时候声音通道没开&am…

Redis数据结构全解析【超详细万字分析】

文章目录 前言一、SDS1、SDS的必要性2、SDS的数据结构3、SDS的优势O&#xff08;1&#xff09;复杂度获取字符串长度二进制安全不会发生缓冲区溢出节省空间 二、链表1、结构设计2、优缺点 三、压缩列表1、结构设计2、连续更新3、压缩列表的缺陷 四、哈希表1、结构设计2、哈希冲…

236. 二叉树的最近公共祖先-优化

本期我们对该题进行优化&#xff0c;不知道题目的小伙伴建议先看看之前的 236. 二叉树的最近公共祖先_KLZUQ的博客-CSDN博客 我们要将时间复杂度优化为O(N) class Solution { public:bool FindPath(TreeNode* root, TreeNode* x,stack<TreeNode*>& path){if(rootnul…

Kubernetes(K8s)基本环境部署

此处只做学习使用&#xff0c;配置单master环境。 一、环境准备 1、ip主机规划&#xff08;准备五台新机&#xff09;>修改各个节点的主机名 注意&#xff1a;关闭防火墙与selinux 节点主机名ip身份joshua1 kubernetes-master.openlab.cn 192.168.134.151masterjoshua2k…

无涯教程-分类算法 - 朴素贝叶斯

朴素贝叶斯算法是一种基于应用贝叶斯定理的分类技术&#xff0c;其中强烈假设所有预测变量彼​​此独立。简而言之&#xff0c;假设是某个类中某个要素的存在独立于同一类中其他任何要素的存在。 在贝叶斯分类中&#xff0c;主要的兴趣是找到后验概率&#xff0c;即给定某些观…

抽象类和接口有什么区别?

在 Java 中&#xff0c;抽象类和接口是两种不同的类类型。它们都不能直接实例化&#xff0c;并且它们都是用来定义一些基本的属性和方法的&#xff0c;但它们有以下几点不同&#xff1a; 定义不同&#xff1a;定义的关键字不同&#xff0c;抽象类是 abstract&#xff0c;而接口…

Linux操作系统--包管理yum

1.概述 YUM(全称为 Yellow dog Updater, Modified)是一个在 Fedora 和 RedHat 以及 CentOS中的 Shell 前端软件包管理器。基于 RPM 包管理,能够从指定的服务器自动下载 RPM 包并且安装,可以自动处理依赖性关系,并且一次安装所有依赖的软件包,无须繁琐地一次次下载、安装。…

软考:中级软件设计师:数据库并发控制,完整性约束,数据库安全

软考&#xff1a;中级软件设计师:数据库并发控制 提示&#xff1a;系列被面试官问的问题&#xff0c;我自己当时不会&#xff0c;所以下来自己复盘一下&#xff0c;认真学习和总结&#xff0c;以应对未来更多的可能性 关于互联网大厂的笔试面试&#xff0c;都是需要细心准备的…

CrossOver 23 新功能介绍 CrossOver 23 版本更新了哪些功能

本次发布的CrossOver 23为用户带来了许多令人期待的新功能和优化&#xff0c;特别是对游戏方面的支持&#xff0c;更是让广大Mac游戏玩家兴奋。CrossOver 23包括对Wine 8.0.1的更新&#xff0c;带来了5000多处改动&#xff0c;对各种应用程序进行了改进。该版本还包括 Wine Mon…

AD9361配置采用纯PL方式,QT编写的小软件可以快速实现

采用ADI官方的API函数&#xff0c;虽然能够快速的实现AD9361配置&#xff0c;让我们不必关注9361的内部寄存器的配置过程&#xff0c;但是在实际的项目开发过程中&#xff0c;也在一定程度上限制了AD9361与PL之间数据交互的灵活性。 今天给大家推荐采用AD9361官方提供的配置软…