[论文阅读笔记26]Tracking Everything Everywhere All at Once

news2025/1/9 16:52:48

论文地址: 论文
代码地址: 代码

这是一篇效果极好的像素级跟踪的文章, 发表在ICCV2023, 可以非常好的应对遮挡等情形, 其根本的方法在于将2D点投影到一个伪3D(quasi-3D)空间, 然后再映射回去, 就可以在其他帧中得到稳定跟踪.

这篇文章的方法不是很好理解, 代码也刚开源, 做一下笔记备忘.


0. Abstract

传统的光流或者粒子视频跟踪方法都是用有限的时间窗口去解决的, 所以他们并不能很好的应对长时遮挡, 也不能保持估计的轨迹的全局连续性. 为此, 我们提出了一个完整的, 全局的连续性的运动表示方法, 叫做OmniMotion. 具体地, OmniMotion将一个视频序列表示成一个准-3D的规范量(quasi-3D canonical volume), 然后通过定义一个双射(也就是从平面空间到所谓的canonical的空间), 这样我们通过一个准3D空间, 就可以描述一个完整的运动(因为补偿了2D缺失的信息).

1. Method

由于对相关领域知识的匮乏, 先略过Introduction和Related Work部分, 先来看方法.

从整体流程上, OmniMotion将一整个视频序列作为输入, 同时还输入不太准确的带噪的运动估计(例如光流估计), 然后解出一个完整的, 全局的运动轨迹.

那么如何解决遮挡问题呢? 遮挡, 只是在2D的图像平面下遮挡了, 但是在3D信息中是可以恢复出来的. 为此, 我们将场景给投影到某个3D空间, 这个空间可以尽可能描述像素完整的运动. 比如说, 第 t 1 t_1 t1帧的某个像素 x 1 x_1 x1, 给投影到这个3D空间变为 x ′ x' x, 然后在第 t 2 t_2 t2帧我们再将这个 x ′ x' x投射到2D平面, 就得到了对应的点 x 2 x_2 x2. 由于这个3D不需要真正的进行3D重建(因为真正的3D重建是需要知道相机的内参和外参, 内参包括图像中心的坐标, 相机的焦距等, 外参需要知道相机的朝向等, 是比较复杂的), 因此我们将该空间成为quasi-3D.

所以具体是如何做的呢?

1.1 规范3D量的组成

我们将前述的规范3D量记为 G G G. 和神经辐射场(NeRF)一样, 我们在 G G G上定义了一个基于坐标的网络 F θ F_{\theta} Fθ, 该网络将 G G G中的3D坐标 u u u映射到密度 σ \sigma σ颜色 c c c. 其中密度可以告诉我们表面(surface)在这个3D空间中的位置, 颜色是可以在训练过程中计算光度损失(photometric loss).

1.2 3D双射

如前所述, 我们需要定义一个从本地坐标(也就是视频或图像坐标)到quasi-3D空间的一个映射, 以及逆映射, 这样我们可以再映射回别的时间索引的帧找到对应点. 然而, 实际上该工作是将本地的2D坐标给提升到3D的(后面会讲如何做的), 然后从提升后的本地3D坐标投影到quasi-3D空间. 整个映射和逆映射的过程如下:

x j = T j − 1 ∘ T i ( x i ) x_j = \mathcal{T}_j^{-1}\circ \mathcal{T}_i(x_i) xj=Tj1Ti(xi)

其中 i , j i,j i,j是frame index, 因此, 我们定义的映射是和时间有关的. 然而, 中间产物 u = T i ( x i ) u= \mathcal{T}_i(x_i) u=Ti(xi)应该是与时间无关的.

在实现上, 映射是用可逆神经网络(INN)做的.

1.3 计算运动

流程上, 我们在2D图像上的一个像素 p i p_i pi, 我们首先将其提升到3D, 变成 p i ′ p_i' pi. 方法是在一个射线上进行采样. 然后用上一节定义的3D双射投影到第 j j j帧对应的3D点, 最后再降维回2D就可以了.

具体地, 由于我们已经将相机的运动包含在映射 T \mathcal{T} T内了 , 因此我们直接将相机建模成固定的正交相机. 固定正交相机的含义是, 物体不再具有近大远小的特征. 这样一来, 我们就可以很容易的将2D坐标拓展到3D坐标. 也就是说, 既然物体的大小不再随着深度的变化而变化, 那么2D像素点 ( x i , y i ) (x_i, y_i) (xi,yi)不论深度如何, 它的值(RGB)一直是一样的, 因此前述的射线可以这样定义:

r i ( z ) = o i + z d , o i = [ p i , 0 ] ∈ R 3 , d = [ 0 , 0 , 1 ] r_i(z)=o_i+zd, \\ o_i = [p_i, 0] \in \mathbb{R}^3, d = [0, 0, 1] ri(z)=oi+zd,oi=[pi,0]R3,d=[0,0,1]

因此我们在这个射线上采集 K K K个样本, 就相当于在这个固定正交相机拍摄的3D场景中进行深度采样.

然后, 这么一堆样本, 我们用映射 T i \mathcal{T}_i Ti投影到quasi-3D空间, 然后再用之前说的映射 F θ F_{\theta} Fθ转换成密度和颜色的量 ( σ , c ) (\sigma, c) (σ,c), 即, 对于第 k k k个样本:

( σ k , c k ) = F θ ( T i ( x i k ) ) x j k = T j − 1 ( ( σ k , c k ) ) (\sigma_k, c_k) = F_\theta(\mathcal{T}_i(x_i^k)) \\ x_j^k = \mathcal{T}_j^{-1}((\sigma_k, c_k)) (σk,ck)=Fθ(Ti(xik))xjk=Tj1((σk,ck))

随后, 我们根据第 j j j帧的这 K K K个对应样本, 得到第 j j j帧的估计:

x ^ j = ∑ k = 1 K T k α k x j k , where   T k = Π l = 1 k − 1 ( 1 − α l ) , α k = 1 − exp ⁡ { − σ k } \hat{x}_j = \sum_{k=1}^KT_k\alpha_kx_j^k, \\ \text{where} ~~T_k=\Pi_{l=1}^{k-1}(1-\alpha_l), \\ \alpha_k = 1-\exp\{-\sigma_k\} x^j=k=1KTkαkxjk,where  Tk=Πl=1k1(1αl),αk=1exp{σk}

以上的过程叫做alpha compositing, 是NeRF中一个常用的技巧. 意义是, 密度实际上表达了3D空间中存在物体的可能性, 1 − exp ⁡ { − σ k } 1-\exp\{-\sigma_k\} 1exp{σk}就是一种对概率的衡量. 对于是否采纳第 k k k个样本, 重要性为 T k α k T_k\alpha_k Tkαk, α k \alpha_k αk已经解释. T k T_k Tk的含义是在这之前的样本的联合可信程度, 也就是说, 之前有一个样本已经比较可信了, 那么这个样本就可以更少的采纳.

以上是个人理解

因此, 上面的过程总结为下图:
在这里插入图片描述

2. Training

这个工作是用已有的光流方法生成标签, 指导训练的. 这部分重点先记一下损失函数.

损失函数由三部分构成, 一个是位置误差, 也就是坐标误差. 一个是颜色误差, 这就是前面 c c c的作用, 还有一个是因为要保证平稳性而加入的罚项. 其中1, 3项采用1范数, 第二项采用2范数.

Flow loss:

L f l o = ∑ f i → j ∣ ∣ f ^ i → j − f i → j ∣ ∣ 1 , f ^ i → j = p ^ j − p i \mathcal{L}_{flo} = \sum_{f_{i \to j}}|| \hat{f}_{i \to j} - f_{i \to j}||_1, \\ \hat{f}_{i \to j} = \hat{p}_j - p_i Lflo=fij∣∣f^ijfij1,f^ij=p^jpi

photometric loss:

L p h o = ∑ i , p ∣ ∣ C ^ i ( p ) − C i ( p ) ∣ ∣ 2 2 \mathcal{L}_{pho} = \sum_{i, p}|| \hat{C}_{i}(p) - C_i(p)||_2^2 Lpho=i,p∣∣C^i(p)Ci(p)22

smooth loss:

L r e g = ∑ i , x ∣ ∣ x i + 1 − x i + x i − 1 − x i ∣ ∣ 1 \mathcal{L}_{reg} = \sum_{i, x}|| x_{i + 1} - x_i + x_{i - 1} - x_i||_1 Lreg=i,x∣∣xi+1xi+xi1xi1

意义是保证前一帧和后一帧的差距尽量小.

最终的loss是这三项的线性组合.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/932041.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Git工作流

实际开发项目使用到的分支: main:生产环境,也就是你们在网上可以下载到的版本,是经过了很多轮测试得到的稳定版本。 release: 开发内部发版,也就是测试环境。 dev:所有的feature都要从dev上checkout。 fea…

【C51 GPIO的原理和内部结构】

51单片机项目基础篇 中篇:介绍GPIO1、认识GPIO2、GPIO 结构框图与工作原理2.1、P0端口结构框图与工作原理2.1.1、剖析组成 P0 口的每个单元的作用2.1.2、 P0 口做为 I/O 口及地址/数据总线使用时的具体工作过程 2.2、P1 端口结构框图与工作原理2.3、P2 端口结构框图…

求生之路2社区服务器sourcemod安装配置搭建教程centos

求生之路2社区服务器sourcemod安装配置搭建教程centos 大家好我是艾西,通过上文我们已经成功搭建了求生之路2的服务端。但是这个服务端是纯净的服务端,就是那种最纯粹的原版。如果想要实现插件、sm开头的命令等功能,需要安装这个sourcemod。…

JavaScript(笔记)

目录 Hello World JavaScript 的变量 JavaScript 动态类型 隐式类型转换 JavaScript 数组 JavaScript 函数 JavaScript 中变量的作用域 对象 DOM 选中页面元素 事件 获取 / 修改元素内容 获取 / 修改元素属性 获取 / 修改 表单元素属性 获取 / 修改样式属性 新…

如何可以管理监督员工工作微信?

自从微信管理系统研发上线之后,为了各企业带来了福音。 很多用户企业都是这样评论微信管理系统的:员工的所有微信聊天记录后台都可以清楚明了的看到,聊天记录都是永久保存的,不担心员工在手机上把聊天记录删除,杜绝员…

基于黑猩猩算法优化的BP神经网络(预测应用) - 附代码

基于黑猩猩算法优化的BP神经网络(预测应用) - 附代码 文章目录 基于黑猩猩算法优化的BP神经网络(预测应用) - 附代码1.数据介绍2.黑猩猩优化BP神经网络2.1 BP神经网络参数设置2.2 黑猩猩算法应用 4.测试结果:5.Matlab代…

MyBatis 的关联关系配置 一对多,一对一,多对多 关系的映射处理

目录 一.关联关系配置的好处 二. 导入数据库表: 三. 一对多关系:-- 一个订单对应多个订单项 四.一对一关系:---一个订单项对应一个订单 五.多对多关系(两个一对多) 一.关联关系配置的好处 MyBatis是一…

Java——它要求用户输入一个整数(实际上是一个字符串),然后计算该整数的平方值,并将结果输出。

这是一个Java程序,它要求用户输入一个整数(实际上是一个字符串),然后计算该整数的平方值,并将结果输出。程序的基本流程如下: 首先,声明并初始化变量data和result,它们的初始值都为…

咸鱼之王俱乐部网站开发

我的俱乐部 最新兑换码 *注意区分大小写,中间不能有空格! APP666 HAPPY666 QQ888 QQXY888 vip666 VIP666 XY888 app666 bdvip666 douyin666 douyin777 douyin888 happy666 huhushengwei888 taptap666 周活动 宝箱周 宝箱说明 1.木质宝箱开启1个…

Netty入门学习和技术实践

Netty入门学习和技术实践 Netty1.Netty简介2.IO模型3.Netty框架介绍4. Netty实战项目学习5. Netty实际应用场景6.扩展 Netty 1.Netty简介 Netty是由JBOSS提供的一个java开源框架,现为 Github上的独立项目。Netty提供异步的、事件驱动的网络应用程序框架和工具&…

nuxt.js框架使用swiper的5.4.5版本记录,创建广告位幻灯片

nuxt依赖 “nuxt”: “^2.15.8”, “swiper”: “^5.4.5”, “vue”: “^2.7.10”, “vue-awesome-swiper”: “^4.1.1”, 需要完成的效果是 参考地址&#xff1a;https://3.swiper.com.cn/demo/pcSlide/ nuxt代码&#xff1a; <template><div class"page&quo…

基于AI + Milvus Cloud拓展更多、更丰富的AI应用场景

项目后续:探索更多应用场景 欢迎大家基于本项目拓展更多、更丰富的应用场景,例如: 进一步延伸对比功能,例如将不同的单品归类到一起。同样,也可以上传更多图像到数据库中,丰富查询结果。 将本项目转变为时尚探测仪或者时尚推荐系统。例如,将明星图像替换成可购买的…

软件开发的201个原则 阅读笔记 第172-201个原则

目录 原则172 做项目总结 第8章 产品保证原则 原则173 产品保证并不是奢侈品 原则 174 尽早建立软件配置管理过程 原则175 使软件配置管理适应软件过程 原则176 组织SCM 独立于项目管理 原则 177 轮换人员到产品保证组织 给所有中间产品一个名称和版本 原则179 控制基准 原则…

五、多表查询-4.1子查询和分类

一、概念 SQL语句中嵌套select语句&#xff0c;成为嵌套查询&#xff0c;又称子查询。 子查询外部的语句 可以是 insert / update / delete / select 的任何一个。 二、子查询分类 1、根据子查询结果不同 标量子查询&#xff08;子查询结果为单个值&#xff09;、列子查询&a…

Xmind软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 XMind是一款非常流行的思维导图软件&#xff0c;可以帮助用户创建清晰、美观的思维导图&#xff0c;用于记录、整理思维和团队协作。以下是关于XMind软件的详细介绍。 1、XMind的历史和演变 XMind是由北京心图科技有限公司开发…

算法通过村第8关【青铜】| 二叉树的经典算法题

二叉树的双指针 1.相同的树 思路&#xff1a;递归的挨个比较是否相同 class Solution {public boolean isSameTree(TreeNode p, TreeNode q) {if((p null&&q!null) || (p ! null && q null) || (p!null&&q!null&&p.val ! q.val)){return f…

安全帽穿戴检测人脸闸机联动

安全帽穿戴检测人脸闸机联动系统实通过yolov8网络深度学习算法模型&#xff0c;安全帽穿戴检测人脸闸机联动系统现对进入工地施工区域人员是否穿戴安全帽进行精准监测和身份识别&#xff0c;只有在满足这两个条件的情况下&#xff0c;闸机才会打开&#xff0c;允许其进入工地施…

器件介绍TMP1826NGRR、TMP1826DGKR、TMP1827NGRR、TMP1075NDRLR数字温度传感器

一、TMP1826 具有 2Kb EEPROM 的 1-Wire、0.2C 精度温度传感器 器件介绍 TMP1826 是一款高精度、1-Wire 兼容的数字输出温度传感器&#xff0c;具有集成的 2Kb EEPROM 和 –55C 至150C 的宽工作温度范围。TMP1826 在 10C 至45C 的温度范围内提供 0.1C&#xff08;典型值&#…

如何搭建数字化招商加盟体系?如何推动企业招商加盟增速?

线索转化率低、客户数据不完整及合作过程中服务满意度低等情景是企业在进行招商加盟的过程中常常会遇到的问题。如何使用数字化招商加盟工具&#xff0c;在业务运营的过程中来提高企业成单率、提高企业线索价值&#xff0c;提高客户满意度&#xff1f; 开利网络数字化招商加盟系…

大语言模型之六- LLM之企业私有化部署

数据安全是每个公司不得不慎重对待的&#xff0c;为了提高生产力&#xff0c;降本增效又不得不接受新技术带来的工具&#xff0c;私有化部署对于公司还是非常有吸引力的。大语言模型这一工具结合公司的数据可以大大提高公司生产率。 私有化LLM需要处理的问题 企业内私有化LLM…