mysql处理json格式的字段,一文搞懂mysql解析json数据

news2024/11/19 16:24:43

文章目录

  • 一、概述
    • 1、什么是JSON
    • 2、MySQL的JSON
    • 3、varchar、text、json类型字段的区别
  • 二、JSON类型的创建
    • 1、建表指定
    • 2、修改字段
  • 三、JSON类型的插入
    • 1、字符串直接插入
    • 2、JSON_ARRAY()函数插入数组
    • 3、JSON_OBJECT()函数插入对象
    • 4、JSON_ARRAYAGG()和JSON_OBJECTAGG()将查询结果封装成json
  • 四、JSON类型的解析
    • 1、JSON_EXTRACT()解析json
    • 2、-> 箭头函数解析json
    • 3、JSON_QUOTE()引用与JSON_UNQUOTE()取消引用
    • 4、->>箭头解析json
  • 五、JSON类型的查询
    • 1、JSON_CONTAINS()判断是否包含
    • 2、JSON_CONTAINS_PATH()判断
    • 3、JSON_KEYS()获取keys
    • 4、JSON_OVERLAPS()比较两个json
    • 5、JSON_SEARCH()返回字符串的位置
    • 6、JSON_VALUE()提取指定路径的元素
    • 7、MEMBER OF()判断是否是json数组中的元素
    • 8、JSON_DEPTH()获取JSON最大深度
    • 9、JSON_LENGTH()获取文档长度
    • 10、JSON_TYPE()获取JSON类型
    • 11、JSON_VALID()校验JSON格式
  • 六、JSON类型的修改
    • 1、全量修改
    • 2、JSON_ARRAY_APPEND()向数组追加元素
    • 3、JSON_ARRAY_INSERT()向数组指定位置插入元素
    • 4、JSON_INSERT()插入新值
    • 5、JSON_MERGE()合并json
    • 6、JSON_MERGE_PATCH()合并json
    • 7、JSON_MERGE_PRESERVE()合并json
    • 8、JSON_REMOVE()删除元素
    • 9、JSON_REPLACE()替换元素
    • 10、JSON_SET()插入并替换
  • 七、其他JSON函数
    • 1、JSON_TABLE()列转行
    • 2、JSON_SCHEMA_VALID()验证json
    • 3、JSON_SCHEMA_VALIDATION_REPORT()查看验证报告
    • 4、JSON_PRETTY()格式化输出
    • 5、JSON_STORAGE_FREE()计算空间
    • 6、JSON_STORAGE_SIZE()计算空间
  • 八、JSON字段创建索引
  • 参考文档

一、概述

1、什么是JSON

略。自行百度。

2、MySQL的JSON

JSON 数据类型是 MySQL 5.7.8 开始支持的。在此之前,只能通过字符类型(CHAR,VARCHAR 或 TEXT )来保存 JSON 文档。

MySQL 8.0版本中增加了对JSON类型的索引支持。可以使用CREATE INDEX语句创建JSON类型的索引,提高JSON类型数据的查询效率。

存储JSON文档所需的空间与存储LONGBLOB或LONGTEXT所需的空间大致相同。

在MySQL 8.0.13之前,JSON列不能有非空的默认值。

JSON 类型比较适合存储一些列不固定、修改较少、相对静态的数据。MySQL支持JSON格式的数据之后,可以减少对非关系型数据库的依赖。

3、varchar、text、json类型字段的区别

这三种类型的字段,都可以存储json格式,查询起来似乎正常的json函数也能用,这三者存储json类型的数据有什么区别吗?

我们接下来测试一下。

二、JSON类型的创建

1、建表指定

CREATE TABLE `users` (
  `id` int NOT NULL AUTO_INCREMENT COMMENT 'id',
  `name` varchar(50) DEFAULT NULL COMMENT '名字',
  `json_data` json DEFAULT NULL COMMENT 'json数据',
  `info` varchar(2000) DEFAULT NULL COMMENT '普通数据',
  `text` text COMMENT 'text数据',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;

2、修改字段

-- 添加json字段
ALTER TABLE users ADD COLUMN `test_json` JSON DEFAULT NULL COMMENT '测试';
-- 修改字段类型为json
ALTER TABLE users modify test_json JSON DEFAULT NULL COMMENT '测试';
-- 删除json字段
ALTER TABLE users DROP COLUMN test_json;

三、JSON类型的插入

1、字符串直接插入

varchar、text、json格式都支持,也可以插入更复杂的嵌套json:

-- 插入数组
insert into users(json_data) values('[1, "abc", null, true, "08:45:06.000000"]');
insert into users(info) values('[1, "abc", null, true, "08:45:06.000000"]');
insert into users(text) values('[1, "abc", null, true, "08:45:06.000000"]');
-- 插入对象
insert into users(json_data) values('{"id": 87, "name": "carrot"}');
insert into users(info) values('{"id": 87, "name": "carrot"}');
insert into users(text) values('{"id": 87, "name": "carrot"}');
-- 插入嵌套json
insert into users(json_data) values('[{"sex": "M"},{"sex":"F", "city":"nanjing"}]');
insert into users(info) values('[{"sex": "M"},{"sex":"F", "city":"nanjing"}]');
insert into users(text) values('[{"sex": "M"},{"sex":"F", "city":"nanjing"}]');

但是json格式的字段,插入时会自动校验格式,如果格式不是json的,会报错:

insert into users(json_data) values('{"id", "name": "carrot"}');
> 3140 - Invalid JSON text: "Missing a colon after a name of object member." at position 5 in value for column 'users.json_data'.

2、JSON_ARRAY()函数插入数组

-- 格式:
JSON_ARRAY([val[, val] ...])

-- 使用JSON_ARRAY()函数创建数组 : [1, "abc", null, true, "08:09:38.000000"]
insert into users(json_data) values(JSON_ARRAY(1, "abc", null, true,curtime()));
insert into users(info) values(JSON_ARRAY(1, "abc", null, true,curtime()));
insert into users(text) values(JSON_ARRAY(1, "abc", null, true,curtime()));

3、JSON_OBJECT()函数插入对象

对于 JSON 文档,KEY 名不能重复。

如果插入的值中存在重复 KEY,在 MySQL 8.0.3 之前,遵循 first duplicate key wins 原则,会保留第一个 KEY,后面的将被丢弃掉。

从 MySQL 8.0.3 开始,遵循的是 last duplicate key wins 原则,只会保留最后一个 KEY。

-- 格式:
JSON_OBJECT([key, val[, key, val] ...])

-- 创建对象,一个key对应一个value : {"id": 87, "name": "carrot"}
insert into users(json_data) values(json_object('id', 87, 'name', 'carrot'));
insert into users(info) values(json_object('id', 87, 'name', 'carrot'));
insert into users(text) values(json_object('id', 87, 'name', 'carrot'));

4、JSON_ARRAYAGG()和JSON_OBJECTAGG()将查询结果封装成json

mysql> SELECT o_id, attribute, value FROM t3;
+------+-----------+-------+
| o_id | attribute | value |
+------+-----------+-------+
|    2 | color     | red   |
|    2 | fabric    | silk  |
|    3 | color     | green |
|    3 | shape     | square|
+------+-----------+-------+
4 rows in set (0.00 sec)

mysql> SELECT o_id, JSON_ARRAYAGG(attribute) AS attributes
    -> FROM t3 GROUP BY o_id;
+------+---------------------+
| o_id | attributes          |
+------+---------------------+
|    2 | ["color", "fabric"] |
|    3 | ["color", "shape"]  |
+------+---------------------+
2 rows in set (0.00 sec)
mysql> SELECT o_id, attribute, value FROM t3;
+------+-----------+-------+
| o_id | attribute | value |
+------+-----------+-------+
|    2 | color     | red   |
|    2 | fabric    | silk  |
|    3 | color     | green |
|    3 | shape     | square|
+------+-----------+-------+
4 rows in set (0.00 sec)

mysql> SELECT o_id, JSON_OBJECTAGG(attribute, value)
    -> FROM t3 GROUP BY o_id;
+------+---------------------------------------+
| o_id | JSON_OBJECTAGG(attribute, value)      |
+------+---------------------------------------+
|    2 | {"color": "red", "fabric": "silk"}    |
|    3 | {"color": "green", "shape": "square"} |
+------+---------------------------------------+
2 rows in set (0.00 sec)

四、JSON类型的解析

1、JSON_EXTRACT()解析json

格式:JSON_EXTRACT(json_doc, path[, path] …)
其中,json_doc 是 JSON 文档,path 是路径。该函数会从 JSON 文档提取指定路径(path)的元素。如果指定 path 不存在,会返回 NULL。可指定多个 path,匹配到的多个值会以数组形式返回。

-- 解析数组
-- 取下标为1的数组值(数组下标从0开始),结果:20
SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]');
-- 取多个,结果返回是一个数组,结果:[20, 10]
SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[1]', '$[0]');
-- 可以使用*获取全部,结果:[30, 40]
SELECT JSON_EXTRACT('[10, 20, [30, 40]]', '$[2][*]');

-- 还可通过 [M to N] 获取数组的子集
-- 结果:[10, 20]
select json_extract('[10, 20, [30, 40]]', '$[0 to 1]');
-- 这里的 last 代表最后一个元素的下标,结果:[20, [30, 40]]
select json_extract('[10, 20, [30, 40]]', '$[last-1 to last]');
-- 解析对象:对象的路径是通过 KEY 来表示的。
set @j='{"a": 1, "b": [2, 3], "a c": 4}';

-- 如果 KEY 在路径表达式中不合法(譬如存在空格),则在引用这个 KEY 时,需用双引号括起来。
-- 结果: 1 4 3
select json_extract(@j, '$.a'), json_extract(@j, '$."a c"'), json_extract(@j, '$.b[1]');
-- 使用*获取所有元素,结果:[1, [2, 3], 4]
select json_extract('{"a": 1, "b": [2, 3], "a c": 4}', '$.*');
-- 这里的 $**.b 匹配 $.a.b 和 $.c.b,结果:[1, 2]
select json_extract('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b');

json_extract解析出来的数据,可以灵活用于where、order by等等所有地方。

2、-> 箭头函数解析json

column->path,包括后面讲到的 column->>path,都是语法糖,在实际使用的时候都会在底层自动转化为 JSON_EXTRACT。

column->path 等同于 JSON_EXTRACT(column, path) ,只能指定一个path。

-- 同JSON_EXTRACT
insert into users(json_data) values('{"empno": 1001, "ename": "jack"}');
-- 结果:"jack"
select json_data, json_data -> '$.ename' from users;

3、JSON_QUOTE()引用与JSON_UNQUOTE()取消引用

JSON_QUOTE(string),生成有效的 JSON 字符串,主要是对一些特殊字符(如双引号)进行转义。

-- 结果:"null"	"\"null\""	"[1, 2, 3]"
select json_quote('null'), json_quote('"null"'), json_quote('[1, 2, 3]');

JSON_UNQUOTE(json_val),将 JSON 转义成字符串输出。常用于使用JSON_EXTRACT()和->函数解析完之后,去除引号。
JSON_UNQUOTE()特殊字符转义表:

转义序列由序列表示的字符
\"双引号
\b退格字符
\f换页字符
\n换行符
\r回车符
\t制表符
\\反斜杠(\)字符
\uXXXXUnicode XXXX 转UTF-8
insert into users(json_data) values('{"empno": 1001, "ename": "jack"}');
-- 字符串类型转换后会去掉引号,结果:"jack"	jack	1	0
select json_data->'$.ename',json_unquote(json_data->'$.ename'),json_valid(json_data->'$.ename'),json_valid(json_unquote(json_data->'$.ename')) from users;
-- 数字类型转换并没有额外效果,结果:1001	1001	1	1
select json_data->'$.empno',json_unquote(json_data->'$.empno'),json_valid(json_data->'$.empno'),json_valid(json_unquote(json_data->'$.empno')) from users;

直观地看,没加 JSON_UNQUOTE 字符串会用双引号引起来,加了 JSON_UNQUOTE 就没有。但本质上,前者是 JSON 中的 STRING 类型,后者是 MySQL 中的字符类型,这一点可通过 JSON_VALID 来判断。

4、->>箭头解析json

同 column->path 类似,只不过其返回的是字符串,相当于将字符串的双引号去掉了,是一个语法糖,本质上是执行了JSON_UNQUOTE( JSON_EXTRACT(column, path) )。

以下三者是等价的:
JSON_UNQUOTE( JSON_EXTRACT(column, path) )
JSON_UNQUOTE(column -> path)
column->>path

insert into users(json_data) values('{"empno": 1001, "ename": "jack"}');
-- 结果:"jack"	jack	jack	jack
select json_data->'$.ename',json_unquote(json_data->'$.ename'),json_data->>'$.ename', JSON_UNQUOTE( JSON_EXTRACT(json_data, '$.ename') ) from users;

五、JSON类型的查询

1、JSON_CONTAINS()判断是否包含

格式:JSON_CONTAINS(target, candidate[, path])
判断 target 文档是否包含 candidate 文档,包含的话返回1,不包含的话返回0
如果带了path,就判断path中的数据是否等于candidate,等于的话返回1,不等于的话返回0

函数前加not可取反

SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
SET @j2 = '{"a":1}';
-- 判断@j中是否包含@j2,结果:1
SELECT JSON_CONTAINS(@j, @j2);

SET @j2 = '1';
-- 判断@j字段中的a是否等于1,结果:1
SELECT JSON_CONTAINS(@j, @j2, '$.a');
-- 结果:0
SELECT JSON_CONTAINS(@j, @j2, '$.b');

SET @j2 = '{"d": 4}';
-- 结果:0
SELECT JSON_CONTAINS(@j, @j2, '$.a');
-- 结果:1
SELECT JSON_CONTAINS(@j, @j2, '$.c');

SET @j = '[1, "a", 1.02]';
SET @j2 = '"a"';
-- 判断@j数组中是否包含@j2,结果:1
SELECT JSON_CONTAINS(@j, @j2);

2、JSON_CONTAINS_PATH()判断

格式:JSON_CONTAINS_PATH(json_doc, one_or_all, path[, path] …)
判断指定的 path 是否存在,存在,则返回 1,否则是 0。
函数中的 one_or_all 可指定 one 或 all,one 是任意一个路径存在就返回 1,all 是所有路径都存在才返回 1。

函数前加not可取反

SET @j = '{"a": 1, "b": 2, "c": {"d": 4}}';
-- a或者e 存在一个就返回1,结果:1
SELECT JSON_CONTAINS_PATH(@j, 'one', '$.a', '$.e');
-- a和e都存在返回1,结果:0
SELECT JSON_CONTAINS_PATH(@j, 'all', '$.a', '$.e');
-- c中的d存在返回1,结果:1
SELECT JSON_CONTAINS_PATH(@j, 'one', '$.c.d');

SET @j = '[1, 4, "a", "c"]';
-- @j是一个数组,$[1]判断第二个数据是否存在,结果为1
select JSON_CONTAINS_PATH(@j, 'one', '$[1]');
-- $[11]判断第11个数据不存在,结果为0
select JSON_CONTAINS_PATH(@j, 'one', '$[11]');

3、JSON_KEYS()获取keys

返回 JSON 文档最外层的 key,如果指定了 path,则返回该 path 对应元素最外层的 key。

-- 结果:["a", "b"]
SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}');
-- 结果:["c"]
SELECT JSON_KEYS('{"a": 1, "b": {"c": 30}}', '$.b');

4、JSON_OVERLAPS()比较两个json

MySQL 8.0.17 引入的,用来比较两个 JSON 文档是否有相同的键值对或数组元素,如果有,则返回 1,否则是 0。 如果两个参数都是标量,则判断这两个标量是否相等。

函数前加not可取反

-- 结果: 1	0
select json_overlaps('[1,3,5,7]', '[2,5,7]'),json_overlaps('[1,3,5,7]', '[2,6,8]');

-- 部分匹配被视为不匹配,结果:0
SELECT JSON_OVERLAPS('[[1,2],[3,4],5]', '[1,[2,3],[4,5]]');

-- 比较对象时,如果它们至少有一个共同的键值对,则结果为真。
-- 结果:1
SELECT JSON_OVERLAPS('{"a":1,"b":10,"d":10}', '{"c":1,"e":10,"f":1,"d":10}');
-- 结果:0
SELECT JSON_OVERLAPS('{"a":1,"b":10,"d":10}', '{"a":5,"e":10,"f":1,"d":20}');

-- 如果两个标量用作函数的参数,JSON_OVERLAPS()会执行一个简单的相等测试:
-- 结果:1
SELECT JSON_OVERLAPS('5', '5');
-- 结果:0
SELECT JSON_OVERLAPS('5', '6');

-- 当比较标量和数组时,JSON_OVERLAPS()试图将标量视为数组元素。在此示例中,第二个参数6被解释为[6],如下所示:结果:1
SELECT JSON_OVERLAPS('[4,5,6,7]', '6');

-- 该函数不执行类型转换:
-- 结果:0
SELECT JSON_OVERLAPS('[4,5,"6",7]', '6');
-- 结果:0
SELECT JSON_OVERLAPS('[4,5,6,7]', '"6"');

5、JSON_SEARCH()返回字符串的位置

格式:JSON_SEARCH(json_doc, one_or_all, search_str[, escape_char[, path] …])

返回某个字符串(search_str)在 JSON 文档中的位置,其中,
one_or_all:匹配的次数,one 是只匹配一次,all 是匹配所有。如果匹配到多个,结果会以数组的形式返回。
search_str:子串,支持模糊匹配:% 和 _ 。
escape_char:转义符,如果该参数不填或为 NULL,则取默认转义符\。
path:查找路径。

SET @j = '["abc", [{"k": "10"}, "def"], {"x":"abc"}, {"y":"bcd"}]';
-- 结果:"$[0]"
SELECT JSON_SEARCH(@j, 'one', 'abc');
-- 结果:["$[0]", "$[2].x"]
SELECT JSON_SEARCH(@j, 'all', 'abc');
-- 结果:null
SELECT JSON_SEARCH(@j, 'all', 'ghi');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*]');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$**.k');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[*][0].k');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1]');
-- 结果:"$[1][0].k"
SELECT JSON_SEARCH(@j, 'all', '10', NULL, '$[1][0]');
-- 结果:"$[2].x"
SELECT JSON_SEARCH(@j, 'all', 'abc', NULL, '$[2]');
-- 结果:["$[0]", "$[2].x"]
SELECT JSON_SEARCH(@j, 'all', '%a%');
-- 结果:["$[0]", "$[2].x", "$[3].y"]
SELECT JSON_SEARCH(@j, 'all', '%b%');
-- 结果:"$[0]"
SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[0]');
-- 结果:"$[2].x"
SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[2]');
-- 结果:null
SELECT JSON_SEARCH(@j, 'all', '%b%', NULL, '$[1]');
-- 结果:null
SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[1]');
-- 结果:"$[3].y"
SELECT JSON_SEARCH(@j, 'all', '%b%', '', '$[3]');

6、JSON_VALUE()提取指定路径的元素

格式:JSON_VALUE(json_doc, path)
8.0.21 引入的,从 JSON 文档提取指定路径(path)的元素。
完整的语法如下所示:

JSON_VALUE(json_doc, path [RETURNING type] [on_empty] [on_error])

on_empty:
    {NULL | ERROR | DEFAULT value} ON EMPTY

on_error:
    {NULL | ERROR | DEFAULT value} ON ERROR

其中:
RETURNING type:返回值的类型,不指定,则默认是 VARCHAR(512)。不指定字符集,则默认是 utf8mb4,且区分大小写。
on_empty:如果指定路径没有值,会触发 on_empty 子句, 默认是返回 NULL,也可指定 ERROR 抛出错误,或者通过 DEFAULT value 返回默认值。
on_error:三种情况下会触发 on_error 子句:从数组或对象中提取元素时,会解析到多个值;类型转换错误,譬如将 “abc” 转换为 unsigned 类型;值被 truncate 了。默认是返回 NULL。

-- 查找fname的值,结果为:Joe
SELECT JSON_VALUE('{"fname": "Joe", "lname": "Palmer"}', '$.fname');
-- 结果:49.95
SELECT JSON_VALUE('{"item": "shoes", "price": "49.95"}', '$.price' RETURNING DECIMAL(4,2)) AS price;
-- 结果:50.0
SELECT JSON_VALUE('{"item": "shoes", "price": "49.95"}', '$.price' RETURNING DECIMAL(4,1)) AS price;
-- 使用RETURNING定义返回数据类型,等效于以下sql:
SELECT CAST(
    JSON_UNQUOTE( JSON_EXTRACT(json_doc, path) )
    AS type
);


mysql> select json_value('{"item": "shoes", "price": "49.95"}', '$.price1' error on empty);
ERROR 3966 (22035): No value was found by 'json_value' on the specified path.

mysql> select json_value('[1, 2, 3]', '$[1 to 2]' error on error);
ERROR 3967 (22034): More than one value was found by 'json_value' on the specified path.

mysql> select json_value('{"item": "shoes", "price": "49.95"}', '$.item' returning unsigned error on error) as price;
ERROR 1690 (22003): UNSIGNED value is out of range in 'json_value'

7、MEMBER OF()判断是否是json数组中的元素

格式:value MEMBER OF(json_array)
在 MySQL 8.0.17引入了MEMBER OF()函数。判断 value 是否是 JSON 数组的一个元素,如果是,则返回 1,否则是 0。

函数前加not可取反

-- 结果:1
SELECT 17 MEMBER OF('[23, "abc", 17, "ab", 10]');
-- 结果:1
SELECT 'ab' MEMBER OF('[23, "abc", 17, "ab", 10]');
-- 部分匹配不代表匹配
-- 结果:0
SELECT 7 MEMBER OF('[23, "abc", 17, "ab", 10]');
-- 结果:0
SELECT 'a' MEMBER OF('[23, "abc", 17, "ab", 10]');
-- 不执行字符串类型之间的相互转换:结果:0·0
SELECT 17 MEMBER OF('[23, "abc", "17", "ab", 10]'), "17" MEMBER OF('[23, "abc", 17, "ab", 10]')
-- 要将该操作符与本身是数组的值一起使用,必须将其显式转换为JSON数组。结果:1
SELECT CAST('[4,5]' AS JSON) MEMBER OF('[[3,4],[4,5]]');
-- 还可以使用JSON_ARRAY()函数执行必要的强制转换,如下所示: 结果:1
SELECT JSON_ARRAY(4,5) MEMBER OF('[[3,4],[4,5]]');

--转换,结果:1	1
SET @a = CAST('{"a":1}' AS JSON);
SET @b = JSON_OBJECT("b", 2);
SET @c = JSON_ARRAY(17, @b, "abc", @a, 23);
SELECT @a MEMBER OF(@c), @b MEMBER OF(@c);

8、JSON_DEPTH()获取JSON最大深度

语法:JSON_DEPTH(json_doc)
返回JSON文档的最大深度。如果参数为NULL,则返回NULL。如果参数不是有效的JSON文档,则会出现错误。
对于空数组,空对象,标量值,其深度为 1。

-- 结果:1	1	1
SELECT JSON_DEPTH('{}'), JSON_DEPTH('[]'), JSON_DEPTH('true');
-- 结果:2	2
SELECT JSON_DEPTH('[10, 20]'), JSON_DEPTH('[[], {}]');
-- 结果:3
SELECT JSON_DEPTH('[10, {"a": 20}]');

9、JSON_LENGTH()获取文档长度

语法:JSON_LENGTH(json_doc[, path])

返回 JSON 文档的长度,其计算规则如下:
1、如果是标量值,其长度为 1。
2、如果是数组,其长度为数组元素的个数。
3、如果是对象,其长度为对象元素的个数。
4、不包括嵌套数据和嵌套对象的长度。

-- 结果:3
SELECT JSON_LENGTH('[1, 2, {"a": 3}]');
-- 结果:2
SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}');
-- 结果:1
SELECT JSON_LENGTH('{"a": 1, "b": {"c": 30}}', '$.b');

10、JSON_TYPE()获取JSON类型

语法:JSON_TYPE(json_val)
返回 JSON 值的类型。
如果参数不是有效的JSON值,则会出现错误。

SET @j = '{"a": [10, true]}';
-- 结果:OBJECT
SELECT JSON_TYPE(@j);
-- 结果:ARRAY
SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a'));
-- 结果:INTEGER
SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[0]'));
-- 结果:BOOLEAN
SELECT JSON_TYPE(JSON_EXTRACT(@j, '$.a[1]'));
-- 结果:NULL
SELECT JSON_TYPE(NULL);
-- 结果:STRING
select json_type('"abc"');
-- 结果:DATETIME
select json_type(cast(now() as json));

JSON类型:OBJECT(对象)、ARRAY(数组)、BOOLEAN(布尔类型)、NULL
数字类型:INTEGER(TINYINT、SMALLINT、MEDIUMINT以及INT和BIGINT标量)、DOUBLE(DOUBLE、FLOAT)、DECIMAL(MySQL、DECIMAL)
时间类型:DATETIME(DATETIME、TIMESTAMP)、DATE、TIME
字符串类型:STRING(CHAR, VARCHAR, TEXT, ENUM, SET)
二进制类型:BLOB( BINARY, VARBINARY, BLOB, BIT)
其他类型:OPAQUE

11、JSON_VALID()校验JSON格式

语法:JSON_VALID(val)
判断给定值是否是有效的 JSON 文档。
函数前加not可取反

-- 结果:1
SELECT JSON_VALID('{"a": 1}');
-- 结果:0	1
SELECT JSON_VALID('hello'), JSON_VALID('"hello"');

六、JSON类型的修改

1、全量修改

直接使用update语句,将json数据字段全部替换。

update users set json_data = '{"a":1}';

2、JSON_ARRAY_APPEND()向数组追加元素

格式:JSON_ARRAY_APPEND(json_doc, path, val[, path, val] …)
向数组指定位置追加元素。如果指定 path 不存在,则不添加。
在MySQL 5.7中,这个函数被命名为JSON_APPEND()。MySQL 8.0不再支持该名称。

SET @j = '["a", ["b", "c"], "d"]';
-- 在数组第二个元素的数组中追加1,结果:["a", ["b", "c", 1], "d"]
SELECT JSON_ARRAY_APPEND(@j, '$[1]', 1);
-- 结果:[["a", 2], ["b", "c"], "d"]
SELECT JSON_ARRAY_APPEND(@j, '$[0]', 2);
-- 结果:["a", [["b", 3], "c"], "d"]
SELECT JSON_ARRAY_APPEND(@j, '$[1][0]', 3);
-- 多个参数,结果:[["a", 1], [["b", 2], "c"], "d"]
select json_array_append(@j, '$[0]', 1, '$[1][0]', 2, '$[3]', 3);

SET @j = '{"a": 1, "b": [2, 3], "c": 4}';
-- 往b中追加,结果:{"a": 1, "b": [2, 3, "x"], "c": 4}
SELECT JSON_ARRAY_APPEND(@j, '$.b', 'x');
-- 结果:{"a": 1, "b": [2, 3], "c": [4, "y"]}
SELECT JSON_ARRAY_APPEND(@j, '$.c', 'y');

SET @j = '{"a": 1}';
-- 结果:[{"a": 1}, "z"]
SELECT JSON_ARRAY_APPEND(@j, '$', 'z');

3、JSON_ARRAY_INSERT()向数组指定位置插入元素

格式:JSON_ARRAY_INSERT(json_doc, path, val[, path, val] …)
向数组指定位置插入元素。

SET @j = '["a", {"b": [1, 2]}, [3, 4]]';
-- 在下标1处添加元素x,结果:["a", "x", {"b": [1, 2]}, [3, 4]]
SELECT JSON_ARRAY_INSERT(@j, '$[1]', 'x');
-- 没有100个元素,在最后插入,结果: ["a", {"b": [1, 2]}, [3, 4], "x"]
SELECT JSON_ARRAY_INSERT(@j, '$[100]', 'x');
-- 结果:["a", {"b": ["x", 1, 2]}, [3, 4]]
SELECT JSON_ARRAY_INSERT(@j, '$[1].b[0]', 'x');
-- 结果:["a", {"b": [1, 2]}, [3, "y", 4]]
SELECT JSON_ARRAY_INSERT(@j, '$[2][1]', 'y');

-- 早期的修改会影响数组中后续元素的位置,因此同一个JSON_ARRAY_INSERT()调用中的后续路径应该考虑这一点。在最后一个示例中,第二个路径没有插入任何内容,因为在第一次插入之后,该路径不再匹配任何内容。
-- 结果:["x", "a", {"b": [1, 2]}, [3, 4]]
SELECT JSON_ARRAY_INSERT(@j, '$[0]', 'x', '$[2][1]', 'y');

4、JSON_INSERT()插入新值

格式:JSON_INSERT(json_doc, path, val[, path, val] …)
插入不存在的key的值,已经存在的不修改。
仅当指定位置或指定 KEY 的值不存在时,才执行插入操作。另外,如果指定的 path 是数组下标,且 json_doc 不是数组,该函数首先会将 json_doc 转化为数组,然后再插入新值。

SET @j = '{ "a": 1, "b": [2, 3]}';
-- a已经存在则忽略,c不存在则添加,结果:{"a": 1, "b": [2, 3], "c": "[true, false]"}
SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
-- 上面插入的c是一个带引号的字符串,想要插入一个数组,必须进行转换,结果:{"a": 1, "b": [2, 3], "c": [true, false]}
SELECT JSON_INSERT(@j, '$.a', 10, '$.c', CAST('[true, false]' AS JSON));

-- 下标0位置已经有值了,不会插入,结果:1
select json_insert('1','$[0]',"10");
-- 结果:[1, "10"]
select json_insert('1','$[1]',"10");
-- 结果:["1", "2", "10"]
select json_insert('["1","2"]','$[2]',"10");

5、JSON_MERGE()合并json

格式:JSON_MERGE(json_doc, json_doc[, json_doc] …)
合并两个或多个JSON文档。JSON_MERGE_PRESERVE()的同义词;在MySQL 8.0.3中已弃用,在未来版本中可能会被删除。
推荐使用JSON_MERGE_PRESERVE()

-- 结果:[1, 2, true, false]
SELECT JSON_MERGE('[1, 2]', '[true, false]');

6、JSON_MERGE_PATCH()合并json

MySQL 8.0.3 引入的,用来合并多个 JSON 文档。其合并规则如下:
1、如果两个文档不全是 JSON 对象,则合并后的结果是第二个文档。
2、如果两个文档都是 JSON 对象,且不存在着同名 KEY,则合并后的文档包括两个文档的所有元素,如果存在着同名 KEY,则第二个文档的值会覆盖第一个。

-- 不是对象,结果:[true, false]
SELECT JSON_MERGE_PATCH('[1, 2]', '[true, false]');
-- 都是对象,结果:{"id": 47, "name": "x"}
SELECT JSON_MERGE_PATCH('{"name": "x"}', '{"id": 47}');
-- 都不是对象,取第二个,结果:true
SELECT JSON_MERGE_PATCH('1', 'true');
-- 第一个不是对象,取第二个 ,结果:{"id": 47}
SELECT JSON_MERGE_PATCH('[1, 2]', '{"id": 47}');
-- 第二个覆盖第一个,结果:{"a": 3, "b": 2, "c": 4}
SELECT JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }');
-- 结果:{"a": 5, "b": 2, "c": 4, "d": 6}
SELECT JSON_MERGE_PATCH('{ "a": 1, "b":2 }','{ "a": 3, "c":4 }', '{ "a": 5, "d":6 }');
-- 第二个有null,会删除该key,结果:{"a": 1}
SELECT JSON_MERGE_PATCH('{"a":1, "b":2}', '{"b":null}');
-- 嵌套json也可以合并,结果:{"a": {"x": 1, "y": 2}}
SELECT JSON_MERGE_PATCH('{"a":{"x":1}}', '{"a":{"y":2}}');

注意区别于JSON_MERGE_PRESERVE

7、JSON_MERGE_PRESERVE()合并json

MySQL 8.0.3 引入的,用来代替 JSON_MERGE。也是用来合并文档,但合并规则与 JSON_MERGE_PATCH 有所不同。
1、两个文档中,只要有一个文档是数组,则另外一个文档会合并到该数组中。
2、两个文档都是 JSON 对象,若存在着同名 KEY ,第二个文档并不会覆盖第一个,而是会将值 append 到第一个文档中。

-- 数组合并,结果:[1, 2, true, false]
SELECT JSON_MERGE_PRESERVE('[1, 2]', '[true, false]');
-- 对象合并,结果:{"id": 47, "name": "x"}
SELECT JSON_MERGE_PRESERVE('{"name": "x"}', '{"id": 47}');
-- 两个常量,合并为一个数组,结果:[1, true]
SELECT JSON_MERGE_PRESERVE('1', 'true');
-- 对象合并到数组中,结果:[1, 2, {"id": 47}]
SELECT JSON_MERGE_PRESERVE('[1, 2]', '{"id": 47}');
-- 相同的key合并到一个数组,结果:{"a": [1, 3], "b": 2, "c": 4}
SELECT JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }', '{ "a": 3, "c": 4 }');
-- 结果:{"a": [1, 3, 5], "b": 2, "c": 4, "d": 6} 
SELECT JSON_MERGE_PRESERVE('{ "a": 1, "b": 2 }','{ "a": 3, "c": 4 }', '{ "a": 5, "d": 6 }');

注意区别于JSON_MERGE_PATCH()

8、JSON_REMOVE()删除元素

格式:JSON_REMOVE(json_doc, path[, path] …)
删除 JSON 文档指定位置的元素。

SET @j = '["a", ["b", "c"], "d"]';
-- 删除下标为1的元素,结果:["a", "d"]
SELECT JSON_REMOVE(@j, '$[1]');

set @j = '{ "a": 1, "b": [2, 3]}';
-- 删除a元素,结果:{"b": [2, 3]}
select json_remove(@j, '$.a');

set @j = '["a", ["b", "c"], "d", "e"]';
-- 删除多个元素,删除1下标之后,下标移动结果之后再删除下标2位置,结果:["a", "d"]
select json_remove(@j, '$[1]','$[2]');
-- 结果:["a", "e"]
select json_remove(@j, '$[1]','$[1]');

9、JSON_REPLACE()替换元素

语法:JSON_REPLACE(json_doc, path, val[, path, val] …)
替换已经存在的值。不存在的值不做影响。

SET @j = '{ "a": 1, "b": [2, 3]}';
-- 对象替换,结果:{"a": 10, "b": [2, 3]}
SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');

-- 数组替换,结果:[1, "a", 4, "b"]
select json_replace('[1, "a", 3, "b"]', '$[2]', 4, '$[8]', 8);

10、JSON_SET()插入并替换

格式:JSON_SET(json_doc, path, val[, path, val] …)
插入新值,并替换已经存在的值。
换言之,如果指定位置或指定 KEY 的值不存在,会执行插入操作,如果存在,则执行更新操作。

注意JSON_SET、JSON_INSERT、JSON_REPLACE的区别。

SET @j = '{ "a": 1, "b": [2, 3]}';
-- 结果:{"a": 10, "b": [2, 3], "c": "[true, false]"}
SELECT JSON_SET(@j, '$.a', 10, '$.c', '[true, false]');
-- 结果:{"a": 1, "b": [2, 3], "c": "[true, false]"}
SELECT JSON_INSERT(@j, '$.a', 10, '$.c', '[true, false]');
-- 结果:{"a": 10, "b": [2, 3]}
SELECT JSON_REPLACE(@j, '$.a', 10, '$.c', '[true, false]');

七、其他JSON函数

1、JSON_TABLE()列转行

语法:JSON_TABLE(expr, path COLUMNS (column_list) [AS] alias)
MySQL 8.0支持这样一个函数,JSON_TABLE(),从 JSON 文档中提取数据并以表格的形式返回。

完整语法如下:

JSON_TABLE(
    expr,
    path COLUMNS (column_list)
)   [AS] alias

column_list:
    column[, column][, ...]

column:
    name FOR ORDINALITY
    |  name type PATH string path [on_empty] [on_error]
    |  name type EXISTS PATH string path
    |  NESTED [PATH] path COLUMNS (column_list)

on_empty:
    {NULL | DEFAULT json_string | ERROR} ON EMPTY

on_error:
    {NULL | DEFAULT json_string | ERROR} ON ERROR
mysql> SELECT *
    ->   FROM
    ->     JSON_TABLE(
    ->       '[ {"c1": null} ]',
    ->       '$[*]' COLUMNS( c1 INT PATH '$.c1' ERROR ON ERROR )
    ->     ) as jt;
+------+
| c1   |
+------+
| NULL |
+------+
1 row in set (0.00 sec)
select *
 from
   json_table(
     '[{"x":2, "y":"8", "z":9, "b":[1,2,3]}, {"x":"3", "y":"7"}, {"x":"4", "y":6, "z":10}]',
     "$[*]" columns(
       id for ordinality,
       xval varchar(100) path "$.x",
       yval varchar(100) path "$.y",
       z_exist int exists path "$.z",
       nested path '$.b[*]' columns (b INT PATH '$')
     )
   ) as t;
+------+------+------+---------+------+
| id   | xval | yval | z_exist | b    |
+------+------+------+---------+------+
|    1 | 2    | 8    |       1 |    1 |
|    1 | 2    | 8    |       1 |    2 |
|    1 | 2    | 8    |       1 |    3 |
|    2 | 3    | 7    |       0 | NULL |
|    3 | 4    | 6    |       1 | NULL |
+------+------+------+---------+------+
5 rows in set (0.00 sec)
mysql> SELECT *
    -> FROM
    ->   JSON_TABLE(
    ->     '[{"a":"3"},{"a":2},{"b":1},{"a":0},{"a":[1,2]}]',
    ->     "$[*]"
    ->     COLUMNS(
    ->       rowid FOR ORDINALITY,
    ->       ac VARCHAR(100) PATH "$.a" DEFAULT '111' ON EMPTY DEFAULT '999' ON ERROR,
    ->       aj JSON PATH "$.a" DEFAULT '{"x": 333}' ON EMPTY,
    ->       bx INT EXISTS PATH "$.b"
    ->     )
    ->   ) AS tt;

+-------+------+------------+------+
| rowid | ac   | aj         | bx   |
+-------+------+------------+------+
|     1 | 3    | "3"        |    0 |
|     2 | 2    | 2          |    0 |
|     3 | 111  | {"x": 333} |    1 |
|     4 | 0    | 0          |    0 |
|     5 | 999  | [1, 2]     |    0 |
+-------+------+------------+------+
5 rows in set (0.00 sec)
mysql> SELECT *
    -> FROM
    ->   JSON_TABLE(
    ->     '[{"x":2,"y":"8"},{"x":"3","y":"7"},{"x":"4","y":6}]',
    ->     "$[*]" COLUMNS(
    ->       xval VARCHAR(100) PATH "$.x",
    ->       yval VARCHAR(100) PATH "$.y"
    ->     )
    ->   ) AS  jt1;

+------+------+
| xval | yval |
+------+------+
| 2    | 8    |
| 3    | 7    |
| 4    | 6    |
+------+------+
-- 指定path
mysql> SELECT *
    -> FROM
    ->   JSON_TABLE(
    ->     '[{"x":2,"y":"8"},{"x":"3","y":"7"},{"x":"4","y":6}]',
    ->     "$[1]" COLUMNS(
    ->       xval VARCHAR(100) PATH "$.x",
    ->       yval VARCHAR(100) PATH "$.y"
    ->     )
    ->   ) AS  jt1;

+------+------+
| xval | yval |
+------+------+
| 3    | 7    |
+------+------+
mysql> SELECT *
    -> FROM
    ->   JSON_TABLE(
    ->     '[ {"a": 1, "b": [11,111]}, {"a": 2, "b": [22,222]}, {"a":3}]',
    ->     '$[*]' COLUMNS(
    ->             a INT PATH '$.a',
    ->             NESTED PATH '$.b[*]' COLUMNS (b INT PATH '$')
    ->            )
    ->    ) AS jt
    -> WHERE b IS NOT NULL;

+------+------+
| a    | b    |
+------+------+
|    1 |   11 |
|    1 |  111 |
|    2 |   22 |
|    2 |  222 |
+------+------+
mysql> SELECT *
    -> FROM
    ->   JSON_TABLE(
    ->     '[{"a": 1, "b": [11,111]}, {"a": 2, "b": [22,222]}]',
    ->     '$[*]' COLUMNS(
    ->         a INT PATH '$.a',
    ->         NESTED PATH '$.b[*]' COLUMNS (b1 INT PATH '$'),
    ->         NESTED PATH '$.b[*]' COLUMNS (b2 INT PATH '$')
    ->     )
    -> ) AS jt;

+------+------+------+
| a    | b1   | b2   |
+------+------+------+
|    1 |   11 | NULL |
|    1 |  111 | NULL |
|    1 | NULL |   11 |
|    1 | NULL |  111 |
|    2 |   22 | NULL |
|    2 |  222 | NULL |
|    2 | NULL |   22 |
|    2 | NULL |  222 |
+------+------+------+
mysql> SELECT *
    -> FROM
    ->   JSON_TABLE(
    ->     '[{"a": "a_val",
    '>       "b": [{"c": "c_val", "l": [1,2]}]},
    '>     {"a": "a_val",
    '>       "b": [{"c": "c_val","l": [11]}, {"c": "c_val", "l": [22]}]}]',
    ->     '$[*]' COLUMNS(
    ->       top_ord FOR ORDINALITY,
    ->       apath VARCHAR(10) PATH '$.a',
    ->       NESTED PATH '$.b[*]' COLUMNS (
    ->         bpath VARCHAR(10) PATH '$.c',
    ->         ord FOR ORDINALITY,
    ->         NESTED PATH '$.l[*]' COLUMNS (lpath varchar(10) PATH '$')
    ->         )
    ->     )
    -> ) as jt;

+---------+---------+---------+------+-------+
| top_ord | apath   | bpath   | ord  | lpath |
+---------+---------+---------+------+-------+
|       1 |  a_val  |  c_val  |    1 | 1     |
|       1 |  a_val  |  c_val  |    1 | 2     |
|       2 |  a_val  |  c_val  |    1 | 11    |
|       2 |  a_val  |  c_val  |    2 | 22    |
+---------+---------+---------+------+-------+

与表关联查询:

CREATE TABLE t1 (c1 INT, c2 CHAR(1), c3 JSON);

INSERT INTO t1 () VALUES
	ROW(1, 'z', JSON_OBJECT('a', 23, 'b', 27, 'c', 1)),
	ROW(1, 'y', JSON_OBJECT('a', 44, 'b', 22, 'c', 11)),
	ROW(2, 'x', JSON_OBJECT('b', 1, 'c', 15)),
	ROW(3, 'w', JSON_OBJECT('a', 5, 'b', 6, 'c', 7)),
	ROW(5, 'v', JSON_OBJECT('a', 123, 'c', 1111))
;


SELECT c1, c2, JSON_EXTRACT(c3, '$.*') 
FROM t1 AS m 
JOIN 
JSON_TABLE(
  m.c3, 
  '$.*' 
  COLUMNS(
    at VARCHAR(10) PATH '$.a' DEFAULT '1' ON EMPTY, 
    bt VARCHAR(10) PATH '$.b' DEFAULT '2' ON EMPTY, 
    ct VARCHAR(10) PATH '$.c' DEFAULT '3' ON EMPTY
  )
) AS tt
ON m.c1 > tt.at;

结果:
在这里插入图片描述
与表关联查询:

CREATE TABLE employees (
  id INT,
  details JSON
);

INSERT INTO employees VALUES (1, '{"name": "John Doe", "position": "Manager"}');
INSERT INTO employees VALUES (2, '{"name": "Jane Smith", "position": "Developer"}');

SELECT name, position
FROM employees,
JSON_TABLE(details, '$' COLUMNS(
  name VARCHAR(255) PATH '$.name',
  position VARCHAR(255) PATH '$.position'
)) AS emp;

2、JSON_SCHEMA_VALID()验证json

语法:JSON_SCHEMA_VALID(schema,document)
判断 document ( JSON 文档 )是否满足 schema ( JSON 对象)定义的规范要求。完整的规范要求可参考 Draft 4 of the JSON Schema specification (https://json-schema.org/specification-links.html#draft-4)。如果不满足,可通过 JSON_SCHEMA_VALIDATION_REPORT() 获取具体的原因。

它的要求如下:
1、document 必须是 JSON 对象。
2、JSON 对象必需的两个属性是 latitude 和 longitude。
3、latitude 和 longitude 必须是数值类型,且两者的大小分别在 -90 ~ 90,-180 ~ 180 之间。

mysql> SET @schema = '{
    '>  "id": "http://json-schema.org/geo",
    '> "$schema": "http://json-schema.org/draft-04/schema#",
    '> "description": "A geographical coordinate",
    '> "type": "object",
    '> "properties": {
    '>   "latitude": {
    '>     "type": "number",
    '>     "minimum": -90,
    '>     "maximum": 90
    '>   },
    '>   "longitude": {
    '>     "type": "number",
    '>     "minimum": -180,
    '>     "maximum": 180
    '>   }
    '> },
    '> "required": ["latitude", "longitude"]
    '>}';
Query OK, 0 rows affected (0.01 sec)

mysql> SET @document = '{
    '> "latitude": 63.444697,
    '> "longitude": 10.445118
    '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALID(@schema, @document);
+---------------------------------------+
| JSON_SCHEMA_VALID(@schema, @document) |
+---------------------------------------+
|                                     1 |
+---------------------------------------+
1 row in set (0.00 sec)
mysql> SET @document = '{}';
mysql> SET @schema = '{
    '> "id": "http://json-schema.org/geo",
    '> "$schema": "http://json-schema.org/draft-04/schema#",
    '> "description": "A geographical coordinate",
    '> "type": "object",
    '> "properties": {
    '>   "latitude": {
    '>     "type": "number",
    '>     "minimum": -90,
    '>     "maximum": 90
    '>   },
    '>   "longitude": {
    '>     "type": "number",
    '>     "minimum": -180,
    '>     "maximum": 180
    '>   }
    '> }
    '>}';
Query OK, 0 rows affected (0.00 sec)


mysql> SELECT JSON_SCHEMA_VALID(@schema, @document);
+---------------------------------------+
| JSON_SCHEMA_VALID(@schema, @document) |
+---------------------------------------+
|                                     1 |
+---------------------------------------+
1 row in set (0.00 sec)

-- 建表指定check
mysql> CREATE TABLE geo (
    ->     coordinate JSON,
    ->     CHECK(
    ->         JSON_SCHEMA_VALID(
    ->             '{
    '>                 "type":"object",
    '>                 "properties":{
    '>                       "latitude":{"type":"number", "minimum":-90, "maximum":90},
    '>                       "longitude":{"type":"number", "minimum":-180, "maximum":180}
    '>                 },
    '>                 "required": ["latitude", "longitude"]
    '>             }',
    ->             coordinate
    ->         )
    ->     )
    -> );
Query OK, 0 rows affected (0.45 sec)

mysql> SET @point1 = '{"latitude":59, "longitude":18}';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @point2 = '{"latitude":91, "longitude":0}';
Query OK, 0 rows affected (0.00 sec)

mysql> SET @point3 = '{"longitude":120}';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO geo VALUES(@point1);
Query OK, 1 row affected (0.05 sec)

mysql> INSERT INTO geo VALUES(@point2);
ERROR 3819 (HY000): Check constraint 'geo_chk_1' is violated.

-- 查看原因
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Error
   Code: 3934
Message: The JSON document location '#/latitude' failed requirement 'maximum' at
JSON Schema location '#/properties/latitude'.
*************************** 2. row ***************************
  Level: Error
   Code: 3819
Message: Check constraint 'geo_chk_1' is violated.
2 rows in set (0.00 sec)


mysql> INSERT INTO geo VALUES(@point3);
ERROR 3819 (HY000): Check constraint 'geo_chk_1' is violated.
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
  Level: Error
   Code: 3934
Message: The JSON document location '#' failed requirement 'required' at JSON
Schema location '#'.
*************************** 2. row ***************************
  Level: Error
   Code: 3819
Message: Check constraint 'geo_chk_1' is violated.
2 rows in set (0.00 sec)

3、JSON_SCHEMA_VALIDATION_REPORT()查看验证报告

语法:JSON_SCHEMA_VALIDATION_REPORT(schema,document)
该函数会以JSON文档的形式返回一个关于验证结果的报告。如果验证成功,返回{"valid": true}。如果JSON文档验证失败,该函数将返回一个JSON对象,该对象包含下面列出的属性:
valid:false
reason:失败原因
schema-location:校验失败的位置
document-location:失败位置
schema-failed-keyword:关键字或属性名

mysql> SET @schema = '{
    '>  "id": "http://json-schema.org/geo",
    '> "$schema": "http://json-schema.org/draft-04/schema#",
    '> "description": "A geographical coordinate",
    '> "type": "object",
    '> "properties": {
    '>   "latitude": {
    '>     "type": "number",
    '>     "minimum": -90,
    '>     "maximum": 90
    '>   },
    '>   "longitude": {
    '>     "type": "number",
    '>     "minimum": -180,
    '>     "maximum": 180
    '>   }
    '> },
    '> "required": ["latitude", "longitude"]
    '>}';
Query OK, 0 rows affected (0.01 sec)

mysql> SET @document = '{
    '> "latitude": 63.444697,
    '> "longitude": 10.445118
    '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema, @document);
+---------------------------------------------------+
| JSON_SCHEMA_VALIDATION_REPORT(@schema, @document) |
+---------------------------------------------------+
| {"valid": true}                                   |
+---------------------------------------------------+
1 row in set (0.00 sec)
mysql> SET @document = '{
    '> "latitude": 63.444697,
    '> "longitude": 310.445118
    '> }';

mysql> SELECT JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document)): {
  "valid": false,
  "reason": "The JSON document location '#/longitude' failed requirement 'maximum' at JSON Schema location '#/properties/longitude'",
  "schema-location": "#/properties/longitude",
  "document-location": "#/longitude",
  "schema-failed-keyword": "maximum"
}
1 row in set (0.00 sec)

mysql> SET @document = '{}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@schema, @document)): {
  "valid": false,
  "reason": "The JSON document location '#' failed requirement 'required' at JSON Schema location '#'",
  "schema-location": "#",
  "document-location": "#",
  "schema-failed-keyword": "required"
}
1 row in set (0.00 sec)

mysql> SET @schema = '{
    '> "id": "http://json-schema.org/geo",
    '> "$schema": "http://json-schema.org/draft-04/schema#",
    '> "description": "A geographical coordinate",
    '> "type": "object",
    '> "properties": {
    '>   "latitude": {
    '>     "type": "number",
    '>     "minimum": -90,
    '>     "maximum": 90
    '>   },
    '>   "longitude": {
    '>     "type": "number",
    '>     "minimum": -180,
    '>     "maximum": 180
    '>   }
    '> }
    '>}';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT JSON_SCHEMA_VALIDATION_REPORT(@schema, @document);
+---------------------------------------------------+
| JSON_SCHEMA_VALIDATION_REPORT(@schema, @document) |
+---------------------------------------------------+
| {"valid": true}                                   |
+---------------------------------------------------+
1 row in set (0.00 sec)

4、JSON_PRETTY()格式化输出

语法:JSON_PRETTY(json_val)
将 JSON 格式化输出。

SELECT JSON_PRETTY('123'); # scalar
+--------------------+
| JSON_PRETTY('123') |
+--------------------+
| 123                |
+--------------------+

SELECT JSON_PRETTY("[1,3,5]"); # array
+------------------------+
| JSON_PRETTY("[1,3,5]") |
+------------------------+
| [
  1,
  3,
  5
]      |
+------------------------+

SELECT JSON_PRETTY('{"a":"10","b":"15","x":"25"}'); # object
+---------------------------------------------+
| JSON_PRETTY('{"a":"10","b":"15","x":"25"}') |
+---------------------------------------------+
| {
  "a": "10",
  "b": "15",
  "x": "25"
}   |
+---------------------------------------------+

SELECT JSON_PRETTY('["a",1,{"key1":
    "value1"},"5",     "77" ,
         {"key2":["value3","valueX",
    "valueY"]},"j", "2"   ]')\G  # nested arrays and objects
*************************** 1. row ***************************
JSON_PRETTY('["a",1,{"key1":
             "value1"},"5",     "77" ,
                {"key2":["value3","valuex",
          "valuey"]},"j", "2"   ]'): [
  "a",
  1,
  {
    "key1": "value1"
  },
  "5",
  "77",
  {
    "key2": [
      "value3",
      "valuex",
      "valuey"
    ]
  },
  "j",
  "2"
]

5、JSON_STORAGE_FREE()计算空间

MySQL 8.0 新增的,与 Partial Updates 有关,用于计算 JSON 文档在进行部分更新后的剩余空间。

CREATE TABLE jtable (jcol JSON);
INSERT INTO jtable VALUES ('{"a": 10, "b": "wxyz", "c": "[true, false]"}');
-- 更新,结果:{"a": 10, "b": "wxyz", "c": 1}
UPDATE jtable SET jcol = JSON_SET(jcol, "$.a", 10, "$.b", "wxyz", "$.c", 1);
-- 结果:14
SELECT JSON_STORAGE_FREE(jcol) FROM jtable;

-- 连续的部分更新对这个空闲空间的影响是累积的,如下例所示,使用JSON_SET()来减少具有键b的值所占用的空间(并且不做任何其他更改):
UPDATE jtable SET jcol = JSON_SET(jcol, "$.a", 10, "$.b", "wx", "$.c", 1);
-- 结果:16
SELECT JSON_STORAGE_FREE(jcol) FROM jtable;

-- 不使用JSON_SET()、JSON_REPLACE()或JSON_REMOVE()更新列意味着优化器不能就地执行更新;在这种情况下,JSON_STORAGE_FREE()返回0,如下所示:
UPDATE jtable SET jcol = '{"a": 10, "b": 1}';
-- 结果:0
SELECT JSON_STORAGE_FREE(jcol) FROM jtable;

-- JSON文档的部分更新只能在列值上执行。对于存储JSON值的用户变量,该值总是被完全替换,即使使用JSON_SET()执行更新也是如此:
SET @j = '{"a": 10, "b": "wxyz", "c": "[true, false]"}';
SET @j = JSON_SET(@j, '$.a', 10, '$.b', 'wxyz', '$.c', '1');
SELECT @j, JSON_STORAGE_FREE(@j) AS Free; -- 结果:0

-- 对于JSON文本,该函数总是返回0:
SELECT JSON_STORAGE_FREE('{"a": 10, "b": "wxyz", "c": "1"}') AS Free; -- 结果:0

6、JSON_STORAGE_SIZE()计算空间

语法:JSON_STORAGE_SIZE(json_val)
MySQL 5.7.22 引入的,用于计算 JSON 文档的空间使用情况。

CREATE TABLE jtable (jcol JSON);
INSERT INTO jtable VALUES ('{"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"}');
SELECT jcol, JSON_STORAGE_SIZE(jcol) AS Size, JSON_STORAGE_FREE(jcol) AS Free FROM jtable;
+-----------------------------------------------+------+------+
| jcol                                          | Size | Free |
+-----------------------------------------------+------+------+
| {"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"} |   47 |    0 |
+-----------------------------------------------+------+------+
1 row in set (0.00 sec)

UPDATE jtable SET jcol = '{"a": 4.55, "b": "wxyz", "c": "[true, false]"}';
SELECT jcol, JSON_STORAGE_SIZE(jcol) AS Size, JSON_STORAGE_FREE(jcol) AS Free FROM jtable;
+------------------------------------------------+------+------+
| jcol                                           | Size | Free |
+------------------------------------------------+------+------+
| {"a": 4.55, "b": "wxyz", "c": "[true, false]"} |   56 |    0 |
+------------------------------------------------+------+------+
1 row in set (0.00 sec)

-- json文本显示占用存储空间
SELECT JSON_STORAGE_SIZE('[100, "sakila", [1, 3, 5], 425.05]') AS A,
    JSON_STORAGE_SIZE('{"a": 1000, "b": "a", "c": "[1, 3, 5, 7]"}') AS B,
     JSON_STORAGE_SIZE('{"a": 1000, "b": "wxyz", "c": "[1, 3, 5, 7]"}') AS C,
     JSON_STORAGE_SIZE('[100, "json", [[10, 20, 30], 3, 5], 425.05]') AS D;
+----+----+----+----+
| A  | B  | C  | D  |
+----+----+----+----+
| 45 | 44 | 47 | 56 |
+----+----+----+----+
1 row in set (0.00 sec)

八、JSON字段创建索引

同 TEXT,BLOB 字段一样,JSON 字段不允许直接创建索引。
即使支持,实际意义也不大,因为我们一般是基于文档中的元素进行查询,很少会基于整个 JSON 文档。
对文档中的元素进行查询,就需要用到 MySQL 5.7 引入的虚拟列及函数索引

# C2 即虚拟列
# index (c2) 对虚拟列添加索引。
create table t ( c1 json, c2 varchar(10) as (JSON_UNQUOTE(c1 -> "$.name")), index (c2) );

insert into t (c1) values  ('{"id": 1, "name": "a"}'), ('{"id": 2, "name": "b"}'), ('{"id": 3, "name": "c"}'), ('{"id": 4, "name": "d"}');

mysql> explain select * from t where c2 = 'a';
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref   | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | t     | NULL       | ref  | c2            | c2   | 43      | const |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select * from t where c1->'$.name' = 'a';
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref   | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+-------+
|  1 | SIMPLE      | t     | NULL       | ref  | c2            | c2   | 43      | const |    1 |   100.00 | NULL  |
+----+-------------+-------+------------+------+---------------+------+---------+-------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

可以看到,无论是使用虚拟列,还是文档中的元素来查询,都可以利用上索引。

注意,在创建虚拟列时需指定 JSON_UNQUOTE,将 c1 -> “$.name” 的返回值转换为字符串。

参考文档

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://blog.csdn.net/java_faep/article/details/125206014
https://zhuanlan.zhihu.com/p/514819634?utm_id=0
https://blog.csdn.net/sinat_20938225/article/details/129471550

GeoJSON:https://dev.mysql.com/doc/refman/8.0/en/spatial-geojson-functions.html
json方法:https://dev.mysql.com/doc/refman/8.0/en/json-functions.html
json索引:https://dev.mysql.com/doc/refman/8.0/en/create-table-secondary-indexes.html#json-column-indirect-index
json多值索引:https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-multi-valued

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/927864.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

南卡再次发布新款OE-CC开放式耳机,被誉为年度开放式耳机百元标杆!

​国内著名声学品牌南卡,在近日又推出一款全新开放式耳机OE-CC,致力打造舒适、安全、健康听歌新体验,该耳机以其卓越的音质和令人惊叹的性价比而备受瞩目。再次证明了南卡在开放式音频领域的领先地位,被誉为年度开放式耳机百元标杆…

暄桐展览| 我们桐学有自己的习作展(1)

林曦老师《从书法之美到生活之美》的第五阶课程《静定的滋养2021》已告一段落。570天的用功,桐学们的技艺都有了水涨船高的进益。      无论书法课(全阶和五阶)还是国画课,暄桐都有一套完整系统的教学体系,也会在桐…

攻防世界-reverse-666

1. 题目描述 下载附件,发现是一个可执行文件 2. 思路分析 先逆向分析下源码 整个程序的逻辑还是比较简单的,输入key,对key进行encode,如果加密后的字符串和指定字符串相同,那么key就是我们需要的flag,…

AntDB-M的审计功能

数据库的审计功能是指对数据库访问行为进行监管,记录数据库里面发生了什么操作,是数据库系统安全功能的组成部分。 AntDB-M的审计功能关注客户端的连接信息,比如:用户名和主机地址、客户端发送的SQL语句、SQL执行访问的对象、修改…

W6100-EVB-PICO进行UDP组播数据回环测试(九)

前言 上一章我们用我们的开发板作为UDP客户端连接服务器进行数据回环测试,那么本章我们进行UDP组播数据回环测试。 什么是UDP组播? 组播是主机间一对多的通讯模式, 组播是一种允许一个或多个组播源发送同一报文到多个接收者的技术。组播源将…

打破数据孤岛!时序数据库 TDengine 与创意物联感知平台完成兼容性互认

新型物联网实现良好建设的第一要务就是打破信息孤岛,将数据汇聚在平台统一处理,实现数据共享,放大物联终端的行业价值,实现系统开放性,以此营造丰富的行业应用环境。在此背景下,物联感知平台应运而生&#…

IDEA书签使用

在你想要创建书签的地方按F11就能创建书签 在行那里按这一行前面就会打个√,再按一下F11他又会删除 当然也可以按CtrlF11自己定义是√还是字母或者是数字 也可以在文件上加书签 想要快速定位到书签,按ShiftF11查看书签,双击就定位到你这个…

java八股文面试[数据结构]——ConcurrentHashMap原理

HashMap不是线程安全: 在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是…

python 模块xlwt 写入.xls文件

Python操作Excel的模块有很多,并且各有优劣,不同模块支持的操作和文件类型也有不同。下面是各个模块的支持情况: xlrd:xlrd 读取.xls文件xlwings:xlwings 读取写入Excel文件openpyxl:openpyxl 读取写入.xl…

【linux】2 make/Makefile和gitee

文章目录 一、Linux项目自动化构建工具-make/Makefile1.1 背景1.2 实例代码1.3 原理1.4 项目清理 二、linux下第一个小程序-进度条2.1 行缓冲区2.2 进度条 三、git以及gitee总结 ヾ(๑╹◡╹)ノ" 人总要为过去的懒惰而付出代价ヾ(๑╹◡╹)ノ" 一…

十一、pikachu之XXE

文章目录 1、XXE漏洞概述1.1 XML定义1.2 XML结果1.2 XML文档格式1.2.1 DTD内部文档声明1.2.2 DTD外部文档声明1.2.3 DTD声明 2、实战 1、XXE漏洞概述 XXE(xml external entity injection):即xml外部实体注入漏洞,也就是说服务端接收和解析了来自用户端的…

我裸辞去面试大公司python岗位了!

最近换工作了,坐标上海,裸辞,之前早有前辈们说过,“裸辞一时爽,一直裸辞一直爽”,这话一点不假,裸辞你要面临没有收入来源,但是每天眼睁睁看着各种花销不断支出的煎熬,我主要是觉得一…

高忆管理:k线图24种经典图解?

K线图是股市技能剖析中的常用工具,它可以描绘出一段时间内股票或指数的开盘价、收盘价、最高价和最低价等信息,为投资者提供了重要的信息。在这篇文章中,咱们将从多个角度剖析24种经典的K线图,协助读者深入了解和应用它们。 榜首&…

stm32基于HAL库驱动外部SPI flash制作虚拟U盘

stm32基于HAL库驱动外部SPI flash制作虚拟U盘 📌参考文章:https://xiaozhuanlan.com/topic/6058234791🎞实现效果演示: 🔖上图中的读到的FLASH_ID所指的是针对不同容量,所对应的ID。 //W25X/Q不同容量对应…

(五)k8s实战-配置管理

一、ConfigMap 使用 kubectl create configmap -h 查看示例&#xff0c;构建 configmap 对象 1) 基于文件夹&#xff0c;加载文件夹下所有配置文件&#xff0c;创建 kubectl create configmap <configmapName> --from-file<dirPath>2) 指定配置文件&#xff0c;创…

vue3的hooks你可以了解一下

更详细的hooks了解参考这个大佬的文章&#xff1a;掘金&#xff1a;Hooks和Mixins之间的区别 刚开始我简单看了几篇文章感觉Hooks这个东西很普通&#xff0c;甚至感觉还不如vue2的mixin好用。还有export import 感觉和普通定义一个utils文件使用没什么区别。但是Hooks这个东西肯…

vue学习 记录

vue学习 记录 https://v2.cn.vuejs.org/ https://cn.vuejs.org/ https://chrome.zzzmh.cn/index#/index 更多工具— 扩展程序

VLOOKUP

VLOOKUP简单应用 VLOOKUP(A1,B:B,1,FALSE) 是查询A1这子格子的数据在B这一列里面有没有找到相同数据的值,如果有的话就放在当前格子里面去 如果没有的话就是#NA VLOOKUP(A1,F:G,2,FALSE) 是查询A1这子格子的数据在F列查相同的数据,然后再取G列这一行后面的这个格子的数据放到…

连锁餐饮行业的运维困局,向日葵远程控制提供“标准答案”

企业数字化转型的应用落地&#xff0c;在连锁餐饮行业是非常容易被顾客所感知到的&#xff0c;最典型的例子就是各种自助点餐设备。 往往在这些自助点餐设备的背后&#xff0c;还拥有一个覆盖进销存管理、供应链、客户反馈、巡店管理、视频监控等方面的完善的数字化系统&#…

VR全景加盟会遇到哪些问题?全景平台会提供什么?

想创业&#xff0c;你是否也遇到这些问题呢&#xff1f;我是外行怎么办&#xff1f;没有团队怎么办&#xff1f;项目回本周期快吗&#xff1f;项目靠谱吗&#xff1f;加盟平台可信吗&#xff1f;等等这类疑问。近几年&#xff0c;VR产业发展迅速&#xff0c;尤其是VR全景项目在…