1.二维码的生成
废话不多说,直接上代码
# 生成二维码
import qrcode
# 二维码包含的示例数据
data = "B0018"
# 生成的二维码图片名称
filename = "qrcode.png"
# 生成二维码
img = qrcode.make(data)
# 保存成图片输出
img.save(filename)
img.show()
运行效果:
会在当前目前生成一张图片
对生成的二维码识别
opencv从4代之后推出了二维码识别接口.调用方法是这样的.代码如下:
import cv2
img = cv2.imread('qrcode.png')
qrcode = cv2.QRCodeDetector()
result, points, code = qrcode.detectAndDecode(img)
print(result)
运行结果:
B0018
返回值有三个,
-
第一个result就是解码后的内容,例如我这个二维码的结果是"B0018",当然也可以是个纯数字.
-
第二个points是二维码轮廓的四个角,从左上角顺时针转的.
-
第三个code是二维码的原始排列,也就是每个点是0还是255的一个矩阵.白色是255,黑色是0.调用起来十分方便,而且如果不需要解码,只是想定位的话可以调用detect函数,返回结果就只有四个角点了.
如果是一个大图中的一个二维码识别呢?比如下面的这个图
如果继续使用上面的识别二维码是识别不出来的。
下面我们看下二维码的原理及定位原理
二维码的结构与基本原理
标准的二维码结构如下:
特别要关注的是图中三个黑色正方形区域,它们就是用来定位一个二维码的最重要的三个区域,我们二维码扫描与检测首先要做的就是要发现这三个区域,如果找到这个三个区域,我们就成功的发现一个二维码了,就可以对它定位与识别了。
二维码其它各个部分的说明如下:
三个角上的正方形区域从左到右,从上到下黑白比例为1:1:3:1:1。
不管角度如何变化,这个是最显著的特征,通过这个特征我们就可以实现二维码扫描检测与定位。
除了上面的qrcode 包可以识别二维码外,还有pyzbar 包 也可以进行二维码的识别。比对下pyzbar 比qrcode 包的效率 更高。下面的代码
import cv2
import numpy as np
import time
import pyzbar.pyzbar as pyzbar
# 显示条码和二维码位置
def display(im, decodedObjects):
# 遍历所有已解码的对象
for decodedObject in decodedObjects:
points = decodedObject.polygon
# 如果点不形成四边形,请找到凸包
if len(points) > 4:
hull = cv2.convexHull(np.array([point for point in points], dtype=np.float32))
hull = list(map(tuple, np.squeeze(hull)))
else:
hull = points;
# 凸包中的点数
n = len(hull)
# 绘制凸包
for j in range(0, n):
cv2.line(im, hull[j], hull[(j + 1) % n], (255, 0, 0), 3)
# 创建一个 qrCodeDetector 对象
qrDecoder = cv2.QRCodeDetector()
# 检测和解码二维码
t = time.time()
inputImage = cv2.imread("66.jpg")
decodedObjects = pyzbar.decode(inputImage)
if len(decodedObjects):
zbarData = decodedObjects[0].data
else:
zbarData = ''
if zbarData:
cv2.putText(inputImage, "result : {}".format(zbarData.decode()), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 0), 2, cv2.LINE_AA)
else:
cv2.putText(inputImage, "ZBAR : QR Code NOT Detected", (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2,
cv2.LINE_AA)
display(inputImage, decodedObjects)
print("Time Taken for Detect and Decode : {:.3f} seconds".format(time.time() - t))
cv2.imshow("Result", inputImage)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行效果:
从结果中可以看出可以定位到二维码的位置并将 识别的结果显示在左上角。