【Unity3D赛车游戏】【四】在Unity中添加阿克曼转向,下压力,质心会让汽车更稳定

news2025/1/21 5:58:45

在这里插入图片描述


👨‍💻个人主页:@元宇宙-秩沅

👨‍💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅!

👨‍💻 本文由 秩沅 原创

👨‍💻 收录于专栏:Unity游戏demo

🅰️Unity3D赛车游戏



文章目录

    • 🅰️Unity3D赛车游戏
    • 前言
    • 🎶(==A==)车辆优化——阿克曼转向添加
        • 😶‍🌫️认识阿克曼转向
        • 😶‍🌫️区别:
        • 😶‍🌫️关键代码
        • 😶‍🌫️完整代码
    • 🎶(==B==)车辆优化——车身持续稳定的优化
        • 😶‍🌫️速度属性实时转换
        • 😶‍🌫️为车子添加下压力
        • 😶‍🌫️质心的添加centerMess
        • 😶‍🌫️轮胎的平滑度的显示
    • 🅰️


前言


😶‍🌫️版本: Unity2021
😶‍🌫️适合人群:Unity初学者
😶‍🌫️学习目标:3D赛车游戏的基础制作
😶‍🌫️技能掌握:



🎶(A车辆优化——阿克曼转向添加


😶‍🌫️认识阿克曼转向

引用:阿克曼转向是一种现代汽车的转向方式,也是移动机器人的一种运动模式,在汽车转弯的时候,内外轮转过的角度不一样,内侧轮胎转弯半径小于外侧轮胎

原理图:
_____________在这里插入图片描述
简单理解一个杆子把左轮和右轮连接起来一起转。

在这里插入图片描述
左轮的旋转的半径小于右轮

优点:大大减小了车轮转向需要的空间,转向更加稳定

  • 阿克曼公式:

在这里插入图片描述
β为汽车前外轮转角,α为汽车前内轮转角,K为两主销中心距,L为轴距。

在这里插入图片描述

😶‍🌫️区别:

  • 未添加阿克曼转向之前的原理:

    通过控制轮子的最大转向范围来转向

在这里插入图片描述

  • 添加之后

    更稳定,机动性更强

在这里插入图片描述

😶‍🌫️关键代码

  • 后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小
 if (horizontal > 0 ) {
//后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小
            wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;
            wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;
        } else if (horizontal < 0 ) {                                                          
            wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * horizontal;
            wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * horizontal;

        } else {
            wheels[0].steerAngle =0;
            wheels[1].steerAngle =0;
        }

😶‍🌫️完整代码

在这里插入图片描述

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
//-------------------------------------
//—————————————————————————————————————
//___________项目:       ______________
//___________功能:  车轮的运动
//___________创建者:_______秩沅________
//_____________________________________
//-------------------------------------

//驱动模式的选择
public enum EDriveType
{
    frontDrive,   //前轮驱动
    backDrive,    //后轮驱动
    allDrive      //四驱
}


public class WheelMove : MonoBehaviour
{
    //-------------------------------------------
    //四个轮子的碰撞器
    public WheelCollider[] wheels ;

    //网格的获取
    public GameObject[] wheelMesh;

    //扭矩力度
    public float motorflaot = 200f;
  
    //初始化三维向量和四元数
    private Vector3 wheelPosition = Vector3.zero;
    private Quaternion wheelRotation = Quaternion.identity;
    //-------------------------------------------

    //驱动模式选择 _默认前驱
    public EDriveType DriveType = EDriveType.frontDrive;

    //轮半径
    public float radius = 0.25f;


    private void FixedUpdate()
    {
        WheelsAnimation(); //车轮动画

        VerticalContorl(); //驱动管理

        HorizontalContolr(); //转向管理

    }


    //垂直轴方向管理(驱动管理)
    public void VerticalContorl()
    {

        switch (DriveType)
        {
            case EDriveType.frontDrive: 
                //选择前驱
                if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效
                {
                    for (int i = 0; i < wheels.Length - 2; i++)
                    {
                        //扭矩力度
                        wheels[i].motorTorque = InputManager.InputManagerment.vertical *(motorflaot / 2); //扭矩马力归半
                    }
                }
                break;
            case EDriveType.backDrive:
                //选择后驱
                if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效
                {
                    for (int i = 2; i < wheels.Length; i++)
                    {
                        //扭矩力度
                        wheels[i].motorTorque = InputManager.InputManagerment.vertical * (motorflaot / 2); //扭矩马力归半
                    }
                }
                break;
            case EDriveType.allDrive:
                //选择四驱
                if (InputManager.InputManagerment.vertical != 0) //当按下WS键时生效
                {
                    for (int i = 0; i < wheels.Length; i++)
                    {
                        //扭矩力度
                        wheels[i].motorTorque = InputManager.InputManagerment.vertical * ( motorflaot / 4 ); //扭矩马力/4
                    }
                }
                break;
            default:
                break;
        }

       

    }

    //水平轴方向管理(转向管理)
    public void HorizontalContolr()
    {
  

        if (InputManager.InputManagerment.horizontal > 0)
        {
            //后轮距尺寸设置为1.5f ,轴距设置为2.55f ,radius 默认为6,radius 越大旋转的角度看起来越小
            wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;
            wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;
        }
        else if (InputManager.InputManagerment.horizontal < 0)
        {
            wheels[0].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius - (1.5f / 2))) * InputManager.InputManagerment.horizontal;
            wheels[1].steerAngle = Mathf.Rad2Deg * Mathf.Atan(2.55f / (radius + (1.5f / 2))) * InputManager.InputManagerment.horizontal;
       
        }
        else
        {
            wheels[0].steerAngle = 0;
            wheels[1].steerAngle = 0;
        }

    }


    //车轮动画相关
    public  void WheelsAnimation()
    {
        for (int i = 0; i < wheels.Length ; i++)
        {
            //获取当前空间的车轮位置 和 角度
            wheels[i].GetWorldPose(out wheelPosition, out wheelRotation);

            //赋值给
            wheelMesh[i].transform.position = wheelPosition;
            print(wheelRotation);
            wheelMesh[i].transform.rotation = wheelRotation * Quaternion .AngleAxis (90,Vector3 .forward );
           
        }
        
    }
}

        }
        
    }
}


🎶(B车辆优化——车身持续稳定的优化


WheelMove脚本 ——> CarMoveControl脚本 更改脚本名


😶‍🌫️速度属性实时转换


  • 每小时多少公里 和 每秒多少米的对应关系 ——1m/s = 3.6km/h

速度属性建议改成Int类型 ,float类型会上下浮动不准确

 //1m/s = 3.6km/h

        Km_H =(int)(rigidbody.velocity.magnitude * 3.6) ;
        Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间

  • 相机测速 m/s
    在这里插入图片描述
  //相机监测实时速度
          Control = target.GetComponent<CarMoveControl>();

          speed = (int )Control.Km_H / 4;
        
          speed = Mathf.Clamp(0, 55,speed );   //对应最大200公里每小时
  • 添加四个轮子的实时速度,对应虚度属性,可以明显的观察四驱和二驱的汽车动力

在这里插入图片描述

    //车辆物理属性相关
    public void VerticalAttribute()
    {
        //1m/s = 3.6km/h
        Km_H =(int)(rigidbody.velocity.magnitude * 3.6) ;
        Km_H = Mathf.Clamp( Km_H,0, 200 );   //油门速度为 0 到 200 Km/H之间


        //显示每个轮胎的扭矩
        f_right = wheels[0].motorTorque;
        f_left  = wheels[1].motorTorque;
        b_right = wheels[2].motorTorque;
        b_left  = wheels[3].motorTorque;
    }

😶‍🌫️为车子添加下压力


知识百科: 什么是下压力
下压力是车在行进中空气在车体上下流速不一产生的,使空气的总压力指向地面从而增加车的抓地力.

速度越大,下压力越大,抓地更强,越不易翻车
在这里插入图片描述

  • 关键代码
  //-------------下压力添加-----------------

        //速度越大,下压力越大,抓地更强
        rigidbody.AddForce(-transform.up * downForceValue * rigidbody.velocity .magnitude );

😶‍🌫️质心的添加centerMess


知识百科:什么是质心?——质量中心
汽车制造商在设计汽车时会考虑质心的位置和重心高度,以尽可能减小质心侧偏角。 一些高性能汽车甚至会采用主动悬挂系统来控制车身侧倾,从而减小质心侧偏角,提高车辆的稳定性和操控性。

质量中心越贴下,越不容易翻
在这里插入图片描述

        //-------------质量中心同步----------------

        //质量中心越贴下,越不容易翻
        rigidbody.centerOfMass = CenterMass;
  • 手刹的添加

        //手刹管理
    public void HandbrakControl()
    {
        if(InputManager.InputManagerment .handbanl )
        {     
            //后轮刹车
            wheels[2].brakeTorque  = brakVualue;
            wheels[3].brakeTorque  = brakVualue;
        }
        else
        {
            wheels[2].brakeTorque = 0;
            wheels[3].brakeTorque = 0;
        }
    }


😶‍🌫️轮胎的平滑度的显示


wheelhit.forwardSlip;用来观看刹车轮胎在滚动方向上打滑。加速滑移为负,制动滑为正
_______在这里插入图片描述


    for (int i = 0; i < slip.Length; i++)
    {
            WheelHit wheelhit;

            wheels[i].GetGroundHit(out wheelhit);

            slip[i] = wheelhit.forwardSlip; //轮胎在滚动方向上打滑。加速滑移为负,制动滑为正
    }               

🅰️

在这里插入图片描述
在这里插入图片描述


⭐【Unityc#专题篇】之c#进阶篇】

⭐【Unityc#专题篇】之c#核心篇】

⭐【Unityc#专题篇】之c#基础篇】

⭐【Unity-c#专题篇】之c#入门篇】

【Unityc#专题篇】—进阶章题单实践练习

⭐【Unityc#专题篇】—基础章题单实践练习

【Unityc#专题篇】—核心章题单实践练习


你们的点赞👍 收藏⭐ 留言📝 关注✅是我持续创作,输出优质内容的最大动力!


在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/925339.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

10*1000【2】

知识: -----------金融科技背后的技术---------------- -------------三个数字化趋势 1.数据爆炸&#xff1a;internet of everything&#xff08;iot&#xff09;&#xff1b;实时贡献数据&#xff1b;公有云服务->提供了灵活的计算和存储。 2.由计算能力驱动的&#x…

120791-76-6/N-(Fluorenylmethoxycarbonyl)-L-threonine tert-Butyl Ester的化学性质

N-(Fluorenylmethoxycarbonyl)-L-threonine tert-Butyl Ester是一种有机化合物&#xff0c;它的化学结构集成了多种官能团&#xff0c;包括苏氨酸和芴甲氧基羰基等。它经常被用于合成多肽类药物和抗癌药物等。 在合成多肽类药物的过程中&#xff0c;西安凯新生物科技有限公司的…

R语言lasso惩罚稀疏加法(相加)模型SPAM拟合非线性数据和可视化

全文链接&#xff1a;https://tecdat.cn/?p33462 本文将关注R语言中的LASSO&#xff08;Least Absolute Shrinkage and Selection Operator&#xff09;惩罚稀疏加法模型&#xff08;Sparse Additive Model&#xff0c;简称SPAM&#xff09;。SPAM是一种用于拟合非线性数据的强…

两年半机场,告诉我如何飞翔

为说明如何坐飞机离港&#xff0c;故此记录一篇。何为离港&#xff0c;顾名思义&#xff0c;离开港湾&#xff0c;那何为港湾&#xff0c;便是机场。 机场&#xff0c;一个你可能经常去&#xff0c;亦或不曾去之地。我想&#xff0c;管你去没去过&#xff0c;先说下怎么去&…

ZLMediaKit+SpringBoot+Vue+Geoserver实现拉取摄像头rtsp流并在web端播放

场景 SpringBoot+Vue+Openlayers实现地图上新增和编辑坐标并保存提交: SpringBoot+Vue+Openlayers实现地图上新增和编辑坐标并保存提交_霸道流氓气质的博客-CSDN博客 开源流媒体服务器ZLMediaKit在Windows上运行、配置、按需拉流拉取摄像头rtsp视频流)并使用http-flv网页播…

Git最简入门

文章目录 几个基本概念版本控制Git的由来分布式 vs 集中式GitSVN Git、GitHub、GitLab、GitWeb、Gitee的区别 动手进行版本控制初始化Git使用情景一&#xff1a;开发新项目使用情景二&#xff1a;在已有项目上开发设置代理 参考 几个基本概念 版本控制 在工作学习中&#xff…

AI + Milvus:将时尚应用搭建进行到底

在上一篇文章中&#xff0c;我们学习了如何利用人工智能技术&#xff08;例如开源 AI 向量数据库 Milvus 和 Hugging Face 模型&#xff09;寻找与自己穿搭风格相似的明星。在这篇文章中&#xff0c;我们将进一步介绍如何通过对上篇文章中的项目代码稍作修改&#xff0c;获得更…

Java中的枚举类,为什么要用枚举类以及使用注意事项和细节

要求&#xff1a;创建季节对象 分析&#xff1a;一年中只有4个季节&#xff0c;因此就不能让随意创建对象了 原本方法&#xff1a; 私有化构造器&#xff0c;避免了随意创建对象不提供setXxx方法&#xff0c;避免了随意赋值&#xff0c;因为枚举对象值通常为只读在本类中直接…

人工智能如何颠覆和改变信息安全格局

当谈及网络信息安全领域&#xff0c;人工智能&#xff08;AI&#xff09;正扮演着关键的角色。其作用是分析庞大的风险数据&#xff0c;以及企业信息系统中不同威胁之间的关联&#xff0c;从而识别出全新类型的攻击方式。这一过程的成果为各类网络安全团队提供了重要情报&#…

ModaHub魔搭社区:WinPlan经营大脑预算编制

目录 WinPlan经营大脑预算编制介绍 WinPlan经营大脑预算编制模版 WinPlan经营大脑预算模版管理 WinPlan经营大脑预算数据录入 WinPlan经营大脑预算编制介绍 预算编制时面向企业经营管理场景,创建各个业务单位的目标,包括销售目标、财务目标、人事目标等,实现各个业务单…

spring之Spring最佳实践与设计模式

Spring最佳实践与设计模式 Spring最佳实践与设计模式 摘要引言词汇解释详细介绍Spring最佳实践1. 使用依赖注入&#xff08;Dependency Injection&#xff09;2. 使用Spring Boot自动配置3. 使用日志框架 注意事项结合设计模式提升代码质量1. 单例模式2. 工厂模式 注意事项 总结…

基于Java+SpringBoot+vue前后端分离人口老龄化社区服务与管理平台设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

基于Java+SpringBoot+vue前后端分离宠物领养系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

安全技术和防火墙——iptables

安全技术&#xff1a; 1.入侵检测系统&#xff1a;不阻断任何网络访问&#xff0c;量化、定位来之内外网络的威胁情况&#xff0c;主要以提供报警和事后监督为主&#xff0c;提供有针对性的指导措施和安全决策依据&#xff0c;类似监控系统&#xff0c;一般采用旁路部署的方式…

文件服务器实现方式汇总

hello&#xff0c;伙伴们&#xff0c;大家好&#xff0c;今天这一期shigen来给大家推荐几款可以一键实现文件浏览器的工具&#xff0c;让你轻松的实现文件服务器和内网的文件传输、预览。 基于node 本次推荐的是http-server&#xff0c; 它的githuab地址是&#xff1a;http-s…

8086汇编语言寄存器清零学习

mov ax, 0 这样应清零了&#xff1b; sub ax, ax 这样也清了&#xff1b; xor ax, ax 这样也清零了&#xff1b;自己跟自己异或&#xff0c;异或是同则结果为0、不同结果为1&#xff1b;自己和自己&#xff0c;每一位都是相同的&#xff0c;异或后结果为0&#xff1b; and …

基于CentOS7.9安装docker服务,配置镜像加速器

目录 一、安装docker服务 二、配置镜像加速器 三、下载系统镜像&#xff08;Ubuntu、 centos &#xff09; 四、基于下载的镜像创建两个容器&#xff08;容器名一个为自己名字全拼&#xff0c;一个为首名字字母 &#xff09; 五、容器的启动、 停止及重启操作 六、查看正…

基于Java+SpringBoot+vue前后端分离林业产品推荐系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

Spring之微服务架构与Spring Cloud

微服务架构与Spring Cloud 微服务架构与Spring Cloud 摘要引言词汇解释详细介绍微服务架构Spring Cloud核心组件示例代码&#xff1a;注释&#xff1a; 注意事项理解微服务架构的优势 详细介绍什么是微服务架构&#xff1f;微服务架构的优势1. 可扩展性&#xff08;Scalability…

Win7安装新版本anaconda出现Failed to extract packages解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…