机器学习实战之模型的解释性:Scikit-Learn的SHAP和LIME库详解

news2025/1/16 5:41:37


引言:机器学习模型的“黑箱”困境

 

机器学习模型的崛起让我们惊叹不已!不论是预测房价、识别图片中的猫狗,还是推荐给你喜欢的音乐,这些模型都表现得非常出色。但是,有没有想过,这些模型到底是如何做出这些决策的呢?

作为一名Python爱好者,我们自然希望能够了解模型背后的原理。好消息是,SHAPLIME这两个库能帮助我们! 它们可以帮助我们揭示模型的内部结构,让我们能够更好地理解和优化模型。


一:SHAP值到底是什么?

SHAP(SHapley Additive exPlanations)是一种解释机器学习模型的方法,它基于博弈论中的Shapley值。Shapley值的核心思想是给每个特征分配一个贡献值,用以表示该特征对预测结果的影响程度。

1.1 SHAP值的计算方法

首先,我们需要安装shap库:

!pip install shap

假设我们已经用Scikit-Learn训练好了一个模型model。为了计算SHAP值,我们需要先初始化一个KernelExplainer对象:

import shap

explainer = shap.KernelExplainer(model.predict, X_train)

然后就可以用shap_values方法计算每个特征的SHAP值了:

shap_values = explainer.shap_values(X_test)

这样,我们就得到了每个特征对每个预测样本的贡献值。🚀

1.2 用SHAP值分析模型

SHAP库提供了一些可视化方法,帮助我们更直观地分析模型。例如,我们可以用summary_plot方法来绘制SHAP值的总体情况:

shap.summary_plot(shap_values, X_test)

这张图展示了每个特征的SHAP值随着特征值的变化。从图中我们可以看出,不同特征对预测结果的影响程度有很大差异。

二:LIME如何揭示模型局部特性?

LIME(Local Interpretable Model-Agnostic Explanations)则是另一种解释机器学习模型的方法。它的主要思想是在每个预测样本周围建立一个简单的线性模型,从而帮助我们理解模型在局部的行为。

2.1 使用LIME分析模型

首先,我们需要安装lime库:

!pip install lime

假设我们已经用Scikit-Learn训练好了一个模型model。为了使用LIME,我们需要先创建一个LimeTabularExplainer对象:

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(X_train.values, feature_names=X_train.columns, class_names=['prediction'], verbose=True)

然后我们可以为某个预测样本生成LIME解释:

i = 42  # 随便选一个样本
exp = explainer.explain_instance(X_test.values[i], model.predict_proba)

最后,我们可以用show_in_notebook方法将LIME解释可视化:

exp.show_in_notebook()

这样我们就可以看到一个简单的线性模型,展示了各个特征对预测结果的贡献。

2.2 LIME的局限性

虽然LIME能够帮助我们理解模型在局部的行为,但它也有一些局限性。例如,LIME依赖于一个简单的线性模型,可能无法很好地捕捉到复杂模型的特性。

三:SHAP与LIME的比较

既然我们已经了解了SHAP和LIME这两个库,那么自然会产生一个疑问:它们之间有什么区别,该如何选择呢?

3.1 二者的异同

首先总结一下它们的相似之处:

  1. 都能帮助我们解释机器学习模型;

  2. 都可以为每个特征分配一个贡献值;

  3. 都支持Scikit-Learn中的模型。

不同之处:

  1. SHAP基于Shapley值,具有一定的理论基础;

  2. LIME关注局部特性,用简单模型解释复杂模型;

  3. SHAP可以捕捉到特征间的相互作用,而LIME不行。

3.2 如何选择?

虽然SHAP和LIME都有各自的优缺点,但总体来说,SHAP更具有理论基础,而且能捕捉到特征间的相互作用。因此,在大多数情况下,我们推荐使用SHAP库。但如果您对局部特性更感兴趣,那么LIME也是一个不错的选择。

技术总结

通过这些方法,我们可以更好地理解模型的内部结构,进而优化模型,提高预测准确率。最后,欢迎在评论区留言分享你的见解,告诉我们你是如何运用这些知识解决实际问题的!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/921932.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32 F103C8T6学习笔记13:IIC通信—AHT10温湿度传感器模块

今日学习一下这款AHT10 温湿度传感器模块,给我的OLED手环添加上测温湿度的功能。 文章提供源码、测试工程下载、测试效果图。 目录 AHT10温湿度传感器: 特性: 连接方式: 适用场所范围: 程序设计: 设…

大模型技术实践(二)|关于Llama 2你需要知道的那些事儿

在上期文章中,我们简要回顾了Llama模型的概况,本期文章我们将详细探讨【关于Llama 2】,你需要知道的那些事儿。 01-Llama 2的性能有多好? 作为Meta新发布的SOTA开源大型语言模型,Llama 2是Llama模型的延续和升级。Ll…

免费的png打包plist工具CppTextu,一款把若干资源图片拼接为一张大图的免费工具

经常做游戏打包贴图的都知道,要把图片打包为一张或多张大图,要使用打包工具TexturePacker。 TexturePacker官方版可以直接导入PSD、SWF、PNG、BMP等常见的图片格式,主要用于网页、游戏和动画的制作,它可以将多个小图片汇聚成一个…

java八股文面试[java基础]——CGLIB动态代理与JDK动态代理

CGLIB CGLIB简介: 什么是CGLIB CGLIB是一个强大的、高性能的代码生成库。其被广泛应用于AOP框架(Spring、dynaop)中,用以提供方法拦截操作。Hibernate作为一个比较受欢迎的ORM框架,同样使用CGLIB来代理单端&#xff…

iPhone 15预计在A16仿生芯片上运行,性能将有何提升?

苹果最新的移动芯片A17仿生芯片无疑让人兴奋不已,该芯片将成为今年一些iPhone 15机型的驱动力。A17基于3nm处理器,这是第一款提出这一主张的移动硅,由于其更紧凑的尺寸,它有望在性能和能效方面都有所提高。今年秋天买一部A17供电的…

【Java架构-包管理工具】-Maven私服搭建-Nexus(三)

本文摘要 Maven作为Java后端使用频率非常高的一款依赖管理工具,在此咱们由浅入深,分三篇文章(Maven基础、Maven进阶、私服搭建)来深入学习Maven,此篇为开篇主要介绍Maven私服搭建-Nexus 文章目录 本文摘要1. Nexus安装…

爬虫逆向实战(二十)--某99网站登录

一、数据接口分析 主页地址:某99网站 1、抓包 通过抓包可以发现登录接口是AC_userlogin 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”可以发现txtPassword和aws是加密参数 请求头是否加密? 无响应是否加密? 无…

Win11本地安装Ubuntu 22.04 双系统简易教程

1.制作启动U盘 首先找到一个硬盘容量不小于4G的空U盘,需要对其进行格式化。 然后下载Ubuntu 22.04的iso文件到本地。 Ubuntu 22.04.1 LTS 中国地区下载链接 下载 UltraISO并制作启动U盘 UltraISO的下载地址 下载免费试用版 选择安装地址,无脑下一步…

Error running ‘FileApp‘: Command line is too long. Shorten command line for

报错如下 Error running FileApp: Command line is too long. Shorten command line for 解决方案如下: 打开运行配置 点击上面,默认是收起来的,点击下,下面选择标注的红色的, 重新运行,可以正常启动了

首发!2025年超500万辆规模,揭榜「融合泊车」TOP10玩家

作为行泊一体赛道关键的一环,融合泊车(基于全景环视超声波雷达)及后续的高阶泊车方案再次成为行业关注的焦点。 除了部分头部车企自研之外,第三方供应商的市场机会也在扩大。一方面,泊车厂商也在拓展行泊一体方案&…

ChatGPT⼊门到精通(1):ChatGPT 是什么

⼀、直观感受 1、公司 OpenAI(美国) 2、官⽅⽹站 3、登录ChatGPT ![在这里插入图片描述](https://img-blog.csdnimg.cn/26901096553a4ba0a5c88c49b2601e6a.png 填⼊帐号、密码,点击登录。登录成功,如下 3、和ChatGPT对话 开始…

专题-【稀疏矩阵的三元组存储】

三元组存储表示: 列序递增转置法:

计算机竞赛 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习

文章目录 0 前言1 课题介绍2 算法原理2.1 算法简介2.2 网络架构 3 关键代码4 数据集4.1 安装4.2 打开4.3 选择yolo标注格式4.4 打标签4.5 保存 5 训练6 实现效果6.1 pyqt实现简单GUI6.3 视频识别效果6.4 摄像头实时识别 7 最后 0 前言 🔥 优质竞赛项目系列&#xf…

CSS中如何实现元素之间的间距(Margin)合并效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 外边距合并的示例:⭐ 如何控制外边距合并:⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff…

sizeof和strlen的对比

文章目录 🚩前言🚩sizeof🚩strlen🚩sizeof和strlen对比 🚩前言 很多小白在学习中,经常将sizeof和strlen弄混了。本篇文章,小编讲解一下sizeof和strlen的区别。🤷‍♂️ &#x1f6a9…

windows查看/删除DNS缓存

一、查看DNS缓存 打开CMD,输入ipconfig/displaydns 二、删除DNS缓存 打开CMD,输入ipconfig/flushdns

基于ssm的水果蔬菜商城java jsp网上购物超市mysql源代码

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于ssm的水果蔬菜商城 系统有2权限:管理…

11-Manager 和 模型Model

准备工作: 一. Manager 库: Manager: 用于管理相关操作端命令和使用相关操作端命令 (1). 安装flask-script: pip install flask-script2.0.3 (2). 在app.py中 包装 app from apps import create_app# Manager类用于管理相关操作端命令和使用相关操作端命令 from flask_scrip…

记录Taro大坑2丢失api无法启动

现象 解决方案 看了很多。很多说要改成一致的版本号。其实没什么用。 正确方案 再新建一个模板跑起来对比config的配置,以及package.json发现关闭预编译即可。预编译导致api丢失

AR室内导航技术之技术说明与效果展示

随着科技的飞速发展,我们周围的环境正在经历着一场数字化的革命。其中,AR室内导航技术以其独特的魅力,为我们打开了一扇通往全新数字化世界的大门。本文将为您详细介绍这一技术的实现原理、工具应用以及成品展示,带您领略AR室内导…