机器学习中XGBoost算法调参技巧

news2024/11/5 19:55:18

图片

本文将详细解释XGBoost中十个最常用超参数的介绍,功能和值范围,及如何使用Optuna进行超参数调优。

对于XGBoost来说,默认的超参数是可以正常运行的,但是如果你想获得最佳的效果,那么就需要自行调整一些超参数来匹配你的数据,以下参数对于XGBoost非常重要:

  • eta

  • num_boost_round

  • max_depth

  • subsample

  • colsample_bytree

  • gamma

  • min_child_weight

  • lambda

  • alpha

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

本文文章由粉丝的分享、推荐,资料干货、资料分享、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:pythoner666,备注:来自CSDN + 加群
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

XGBoost的API有2种调用方法,一种是我们常见的原生API,一种是兼容Scikit-learn API的API,Scikit-learn API与Sklearn生态系统无缝集成。我们这里只关注原生API(也就是我们最常见的),但是这里提供一个列表,这样可以帮助你对比2个API参数,万一以后用到了呢:

图片

如果想使用Optuna以外的超参数调优工具,可以参考该表。下图是这些参数对之间的相互作用:

图片

这些关系不是固定的,但是大概情况是上图的样子,因为有一些其他参数可能会对我们的者10个参数有额外的影响。

1、objective

这是我们模型的训练目标

图片

最简单的解释是,这个参数指定我们模型要做的工作,也就是影响决策树的种类和损失函数。

2、num_boost_round - n_estimators

num_boost_round指定训练期间确定要生成的决策树(在XGBoost中通常称为基础学习器)的数量。默认值是100,但对于今天的大型数据集来说,这还远远不够。

增加参数可以生成更多的树,但随着模型变得更复杂,过度拟合的机会也会显著增加。

从Kaggle中学到的一个技巧是为num_boost_round设置一个高数值,比如100,000,并利用早停获得最佳版本。

在每个提升回合中,XGBoost会生成更多的决策树来提高前一个决策树的总体得分。这就是为什么它被称为boost。这个过程一直持续到num_boost_round轮询为止,不管是否比上一轮有所改进。

但是通过使用早停技术,我们可以在验证指标没有提高时停止训练,不仅节省时间,还能防止过拟合

有了这个技巧,我们甚至不需要调优num_boost_round。下面是它在代码中的样子:

 # Define the rest of the params
 params = {...}
 
 # Build the train/validation sets
 dtrain_final = xgb.DMatrix(X_train, label=y_train)
 dvalid_final = xgb.DMatrix(X_valid, label=y_valid)
 
 bst_final = xgb.train(
    params,
    dtrain_final,
    num_boost_round=100000 # Set a high number
    evals=[(dvalid_final, "validation")],
    early_stopping_rounds=50, # Enable early stopping
    verbose_eval=False,
 )

上面的代码使XGBoost生成100k决策树,但是由于使用了早停,当验证分数在最后50轮中没有提高时,它将停止。一般情况下树的数量范围在5000-10000即可。控制num_boost_round也是影响训练过程运行时间的最大因素之一,因为更多的树需要更多的资源。

3、eta - learning_rate

在每一轮中,所有现有的树都会对给定的输入返回一个预测。例如,五棵树可能会返回以下对样本N的预测:

 Tree 1: 0.57   Tree 2: 0.9   Tree 3: 4.25   Tree 4: 6.4   Tree 5: 2.1

为了返回最终的预测,需要对这些输出进行汇总,但在此之前XGBoost使用一个称为eta或学习率的参数缩小或缩放它们。缩放后最终输出为:

 output = eta * (0.57 + 0.9 + 4.25 + 6.4 + 2.1)

大的学习率给集合中每棵树的贡献赋予了更大的权重,但这可能会导致过拟合/不稳定,会加快训练时间。而较低的学习率抑制了每棵树的贡献,使学习过程更慢但更健壮。这种学习率参数的正则化效应对复杂和有噪声的数据集特别有用。

学习率与num_boost_round、max_depth、subsample和colsample_bytree等其他参数呈反比关系。较低的学习率需要较高的这些参数值,反之亦然。但是一般情况下不必担心这些参数之间的相互作用,因为我们将使用自动调优找到最佳组合。

4、subsample和colsample_bytree

子抽样subsample它将更多的随机性引入到训练中,从而有助于对抗过拟合。

Subsample =0.7意味着集合中的每个决策树将在随机选择的70%可用数据上进行训练。值1.0表示将使用所有行(不进行子抽样)。

与subsample类似,也有colsample_bytree。顾名思义,colsample_bytree控制每个决策树将使用的特征的比例。Colsample_bytree =0.8使每个树使用每个树中随机80%的可用特征(列)。

调整这两个参数可以控制偏差和方差之间的权衡。使用较小的值降低了树之间的相关性,增加了集合中的多样性,有助于提高泛化和减少过拟合。

但是它们可能会引入更多的噪声,增加模型的偏差。而使用较大的值会增加树之间的相关性,降低多样性并可能导致过拟合。

5、max_depth

最大深度max_depth控制决策树在训练过程中可能达到的最大层次数。

图片

更深的树可以捕获特征之间更复杂的相互作用。但是更深的树也有更高的过拟合风险,因为它们可以记住训练数据中的噪声或不相关的模式。为了控制这种复杂性,可以限制max_depth,从而生成更浅、更简单的树,并捕获更通用的模式。

Max_depth数值可以很好地平衡了复杂性和泛化。

6、7、alpha,lambda

这两个参数一起说是因为alpha (L1)和lambda (L2)是两个帮助过拟合的正则化参数。

与其他正则化参数的区别在于,它们可以将不重要或不重要的特征的权重缩小到0(特别是alpha),从而获得具有更少特征的模型,从而降低复杂性。

alpha和lambda的效果可能受到max_depth、subsample和colsample_bytree等其他参数的影响。更高的alpha或lambda值可能需要调整其他参数来补偿增加的正则化。例如,较高的alpha值可能受益于较大的subsample值,因为这样可以保持模型多样性并防止欠拟合。

8、gamma

如果你读过XGBoost文档,它说gamma是:

在树的叶节点上进行进一步分区所需的最小损失减少。

英文原文:the minimum loss reduction required to make a further partition on a leaf node of the tree.

我觉得除了写这句话的人,其他人都看不懂。让我们看看它到底是什么,下面是一个两层决策树:

图片

为了证明通过拆分叶节点向树中添加更多层是合理的,XGBoost应该计算出该操作能够显著降低损失函数。

但“显著是多少呢?”这就是gamma——它作为一个阈值来决定一个叶节点是否应该进一步分割。

如果损失函数的减少(通常称为增益)在潜在分裂后小于选择的伽马,则不执行分裂。这意味着叶节点将保持不变,并且树不会从该点开始生长。

所以调优的目标是找到导致损失函数最大减少的最佳分割,这意味着改进的模型性能。

9、min_child_weight

XGBoost从具有单个根节点的单个决策树开始初始训练过程。该节点包含所有训练实例(行)。然后随着 XGBoost 选择潜在的特征和分割标准最大程度地减少损失,更深的节点将包含越来越少的实例。

图片

如果让XGBoost任意运行,树可能会长到最后节点中只有几个无关紧要的实例。这种情况是非常不可取的,因为这正是过度拟合的定义。

所以XGBoost为每个节点中继续分割的最小实例数设置一个阈值。通过对节点中的所有实例进行加权,并找到权重的总和,如果这个最终权重小于min_child_weight,则分裂停止,节点成为叶节点。

上面解释是对整个过程的最简化的版本,因为我们主要介绍他的概念。

总结

以上就是我们对这 10个重要的超参数的解释,如果你想更深入的了解仍有很多东西需要学习。所以建议给ChatGPT以下两个提示:

 1) Explain the {parameter_name} XGBoost parameter in detail and how to choose values for it wisely.
 
 2) Describe how {parameter_name} fits into the step-by-step tree-building process of XGBoost.

它肯定比我讲的明白,对吧。

最后如果你也用optuna进行调优,请参考以下的GIST:
https://gist.github.com/BexTuychiev/823df08d2e3760538e9b931d38439a68

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/919610.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何深入理解 Node.js 中的流(Streams)

Node.js是一个强大的允许开发人员构建可扩展和高效的应用程序。Node.js的一个关键特性是其内置对流的支持。流是Node.js中的一个基本概念,它能够实现高效的数据处理,特别是在处理大量信息或实时处理数据时。 在本文中,我们将探讨Node.js中的流…

es和数据库同步方案

5.5 课程信息索引同步 5.5.1 技术方案 通过向索引中添加课程信息最终实现了课程的搜索,我们发现课程信息是先保存在关系数据库中,而后再写入索引,这个过程是将关系数据中的数据同步到elasticsearch索引中的过程,可以简单成为索引…

SD-WebUI和ComfyUI的局域网访问设置!

如何通过局域网访问AI绘画软件,这是星球成员提的一个问题,而且两个软件都问到了,我也回答过了。现在把内容整理一下发出来,大家可能用得着。 SD-WebUI和ComfyUI这两个AI绘画工具都是通过浏览器来使用,但是默认情况下并…

oops Framwork creator游戏开发框架

环境: Mac oops Framework 该框架是由gdflas编写,基于cocosCreator 3.x 而实现的开源游戏框架。特点: 框架通过插件方式提供,与项目相分离,方便不同版本平滑升级内置模块低耦合, 可根据需要进行删减&…

如何使用HTML5新增的标签来构建语义化的页面结构?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ <header>&#xff1a;⭐ <nav>&#xff1a;⭐ <main>&#xff1a;⭐ <section>&#xff1a;⭐ <article>&#xff1a;⭐ <aside>&#xff1a;⭐ <footer>&#xff1a;⭐ <figure> 和 &l…

开黑啦kook 机器人开发 PHP swoole Liunx 服务器(宝塔)

安装环境 PHP 拓展 直接使用 宝塔一键安装 &#xff08;Windows系统不支持&#xff09; 设置命令行的PHP版本避免执行脚本时 获取不到 swoole 检查swoole是否安装成功 获取官方SDK GitHub - kaiheila/php-bot: 开黑啦机器人的php版本https://github.com/kaiheila/php-bot 配…

同态排序算法

参考文献&#xff1a; [Batcher68] Batcher K E. Sorting networks and their applications[C]//Proceedings of the April 30–May 2, 1968, spring joint computer conference. 1968: 307-314. [SV11] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. IA…

智能井盖传感器,物联网智能井盖系统

随着城市人口的不断增加和城市化进程的不断推进&#xff0c;城市基础设施的安全和可靠性变得愈发重要&#xff0c;城市窨井盖作为城市基础设施重要组成部分之一&#xff0c;其安全性事关城市安全有序运行和居民生产生活安全保障。 近年来&#xff0c;各地都在加强城市窨井盖治理…

多页面应用多次引入同一个资源优化方法

介绍 项目是多页面应用&#xff0c;每个界面都会引入一次layui框架源码&#xff0c;造成未优化之前界面加载十分缓慢 优化探索 想办法让多页面只加载一次 但是由于多页面使用iframe&#xff0c;主页面和子页面资源隔离&#xff0c;无法让资源只加载一次 利用浏览器缓存 在…

为Claude的分析内容做准备:提取PDF页面内容的简易应用程序

由于Claude虽然可以分析整个文件&#xff0c;但是对文件的大小以及字数是有限制的&#xff0c;为了将pdf文件分批传入Claude人工智能分析和总结文章内容&#xff0c;才有了这篇博客&#xff1a; 在本篇博客中&#xff0c;我们将介绍一个基于 wxPython 和 PyMuPDF 库编写的简易的…

计算机安全学习笔记(I):访问控制安全原理

访问控制原理 从广义上来讲&#xff0c;所有的计算机安全都与访问控制有关。 RFC 4949: Internet Security Glossary, Version 2 (rfc-editor.org) RFC 4949 定义的计算机安全&#xff1a;用来实现和保证计算机系统的安全服务的措施&#xff0c;特别是保证访问控制服务的措施…

【Flink】Flink提交流程

我们通常在学习的时候需要掌握大数据组件的原理以便更好的掌握这个大数据组件&#xff0c;Flink实际生产开发过程中最常见的就是提交到yarn上进行调度&#xff0c;模式使用的Per-Job模式&#xff0c;下面我们就给大家讲下Flink提交Per-Job任务到yarn上的流程&#xff0c;流程图…

【图论】缩点的综合应用(一)

一.缩点的概念 缩点&#xff0c;也称为点缩法&#xff08;Vertex Contraction&#xff09;&#xff0c;是图论中的一种操作&#xff0c;通常用于缩小图的规模&#xff0c;同时保持了图的某些性质。这个操作的目标是将图中的一些节点合并为一个超级节点&#xff0c;同时调整相关…

springboot小知识:配置feign服务超时时间

背景&#xff1a;当前项目通过feign服务调用了其他两个项目的接口&#xff0c;但是由于特殊需求&#xff0c;需要调整某一个项目的feign服务的默认超时时间&#xff1a; 默认连接超时10秒&#xff0c;默认读取超时时间 60秒 1.找到定义的FeignClient 2.根据FeignClient定义的名…

基于YOLOV8模型的课堂场景下人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要&#xff1a;基于YOLOV8模型的课堂场景下人脸目标检测系统可用于日常生活中检测与定位课堂场景下人脸&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检…

Unity实现UI图片面板滚动播放效果第二弹

效果&#xff1a; 场景结构&#xff1a; 特殊物体&#xff1a;panel下面用排列组件horizent layout group放置多个需要显示的面板&#xff0c;用mask遮罩好。 主要思路&#xff1a; 这次是要在最后一个toggle的地方&#xff0c;依然向左滚动回1&#xff0c;这是难点。因此实际…

【接口优化方案解决】

文章目录 前言1、批量插入或者查询数据库2、异步思想 耗时操作&#xff0c;考虑放到异步3、空间换时间思想&#xff1a;恰当使用缓存。4. 预取思想&#xff1a;提前初始化到缓存5、借用线程池6. 事件回调思想&#xff1a;拒绝阻塞等待。7、锁粒度避免过粗8、切换存储方式&#…

考研数据结构:第八章 排序

文章目录 一、排序的基本概念二、插入排序2.1插入排序2.1.1算法思想2.1.2算法实现2.1.3算法效率分析2.1.4算法优化——折半插入排序 2.2希尔排序2.2.1算法思想2.2.2代码实现2.2.3算法性能分析 三、交换排序3.1冒泡排序3.1.1算法思想3.1.2代码实现3.1.3算法性能分析 3.2快速排序…

flutter对数组中某个数据二次加工成单独的数组

如何将数据[2,1,2,2,2,1,2,2,3,2,2,2,2,3,2,2,2,2,2,3,2,4,2,2,1,2,3,2,4,2]加工成 [[2], 1, [2, 2, 2], 1, [2, 2], 3, [2, 2, 2, 2], 3, [2, 2, 2, 2, 2], 3, [2], 4, [2, 2], 1, [2], 3, [2], 4, [2]]。这是实际工作中遇到的问题&#xff0c;UI要求将某一类型数据&#xff…

【无标题】idea 中 SpringBoot 点击运行没反应,按钮成灰色

问题描述 在使用 Spring Boot 开发项目时&#xff0c;可能会遇到一个问题&#xff1a;点击运行按钮后&#xff0c;控制台没有任何输出&#xff0c;项目界面也没有显示。这种情况可能是由多种原因导致的&#xff0c;本文将介绍一些常见的解决方法。 解决方法 首先看下Groovy插…