Hive面试自学版

news2025/1/23 5:55:09

1.什么是HIVE?

Hive是由Facebook开源,基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
Hive是一个基于Hadoop的数据仓库工具,可以将结构化数据文件映射为一张表,同时可以将H-SQL语句转化为MapReduce程序在集群上运行。

2.描述一下Hive的架构模型

答案1

客户端 ->Hive/HiveServer2->MetaStore->Hadoop->MapReduce
1.首先客户端访问Hive或者访问HiveServer2
2.其次MetaStore通过访问Hadoop来记录相关元数据
3.前两步是启动Hive连接之后的预备操作,
现在就可以看到数据了,通过写SQL语句来操作数据
4. Driver驱动器 通过生成计划找到最优解来调用YARN
这时候访问元数据 HADOOP YARN

答案2

Hive大致由hive服务模块、hive客户端模块、以及元数据存储模块和真实数据数据存储模块所组成。通常通过hive命令启动hive客户端需要启动metastore服务来保证对元数据的访问,而元数据是保存在第三方的关系型数据库中,例如MySQL。如果想使用第三方客户端工具远程访问Hive数据,我们要启动hiveserver2服务。接下来如果执行一条查询语句,首先由客户端发起请求hive,然后hive会通过自身的Driver引擎对查询语句进行语义分析生成逻辑执行计划,然后在对其进行优化,然后再将其转化成MR程序,就是所谓的物理执行计划,最后在对MR物理执行计划进行优化,最后再将MR程序默认提交Yarn集群执行,在这个过程中会通过对元数据的访问操作达到和Hadoop集群的交互。最终查询结果会返回给客户端窗口。

3.简单说一下Hive中内部表和外部表的区别,以及它们的使用场景

1.首先说一下区别

内部表:在Hive中删除元数据时将HDFS的数据一并删除
外部表:删除元数据时不删除HDFS的数据

2.使用场景(主要还是针对特点看数据需不需要删除)

内部表:储存修改的临时数据 如:原始日志修改后的数据表
外部表:储存最原始数据 比如原始日志

答案2

在 Hive 中,我们可以创建两种类型的表:内部表(Managed Table)和外部表(External Table)。
当我们创建内部表时,Hive 会完全管理表的数据和元数据。也就是说,数据的生命周期由 Hive 来控制。当我们删除内部表时,Hive 会同时删除元数据和存储在 HDFS 上的数据。这种表适合用于临时数据和中间结果的存储。
当我们创建外部表时,Hive 只管理元数据,而数据的生命周期需要用户自己来控制。当我们删除外部表时,Hive 只删除元数据,而数据仍然保留在 HDFS 中。这种表适合用于共享数据和持久化数据的存储。如果你有多个 Hive 实例或者其他应用需要访问同一份数据,那么使用外部表会很有帮助。
选择内部表还是外部表主要取决于数据的使用场景和生命周期。如果你的数据是临时的、只被 Hive 使用,那么可以选择内部表;如果你的数据是持久的、需要被多个应用或者 Hive 实例共享,那么应该选择外部表

4.简单介绍一下Hive中的hiveserver2和metastore服务

1.HiveServer2

HiveServer2 提供远程访问服务
客户通过访问HiveServer2这个中间件来访问Hadoop集群
HiveServer2通过开启用户模拟功能来实现HiveServer2的访问用户与Hadoop的访问用户达到一致,从而提高安全性(权限隔离)。

2.metastore 元数据访问接口

为Hive和HiveServer2提供元数据访问接口
分为两种
嵌入式:Hive内置,只能为Hive和HiveServer2提供服务,
独立服务: 通过访问独立的MetaStore来访问元数据库,数据都存在这个Metastore中
在这里插入图片描述

答案2

在 Hive 的架构中,HiveServer2 和 Metastore 是两个非常重要的组件。它们分别负责处理客户端的查询请求和存储 Hive 的元数据。
HiveServer2 是 Hive 提供的服务接口,用户可以通过它向 Hive 提交 HQL 查询和其他命令。HiveServer2 支持多用户并发和认证,起到动态代理登录用户及模拟用户的功能。它还提供了 JDBC 和 ODBC 的接口,允许外部应用程序连接到 Hive。例如,你可以通过 HiveServer2 从 Python、Java、 C++等应用程序或者一些可视化工具中查询 Hive 的数据。
Metastore 是 Hive 访问元数据的服务,Hive 的元数据包括表的名字、列的名字和类型、表的分区、表的存储位置等等信息。Hive 的所有操作,例如创建表、查询表、修改表,都需要通过 Metastore 来获取或者更新元数据。Metastore 可以被部署在同一个 HiveServer2 进程中,也可以被部署为一个独立的服务,供多个 Hive 实例共享。
总的来说,这两个服务都是 Hive 架构的重要组成部分,确保了 Hive 的功能和性能。HiveServer2 为用户提供了访问 Hive 的接口,而 Metastore 则为 Hive 提供了元数据管理的功能。

5.说一下Hive中都有哪些排序场景,分别都是怎么实现的

1.order by 全局排序 大表不拆分进行排序
2.sort by 局部排序,区内进行排序
3.distribute 这个排序是其实不算排序,是一个map的分区规则,按照hash对区数取余分区

答案2

在 Hive 中,我们主要可以使用三种方式进行排序:order by,sort by 和 distribute by。这三种方式在排序结果和性能上有所不同。
order by这是最简单的排序方式,它会对输入的所有数据进行全局排序。order by 在执行时会生成一个单独的 Reducer 来进行排序,这意味着所有的数据都需要发送到这个 Reducer 上,然后在 Reducer 上进行排序。这个过程会消耗大量的时间和计算资源,所以 ORDER BY 适合小数据集的排序,但是对于大数据集的排序,性能可能会比较差。
sort by 会在每个 Reducer 上分别对数据进行排序,然后按照 Reducer 的顺序输出结果。因为 sort by 可以并行地在多个 Reducer 上进行排序,所以它比 order by 的性能更好。但是,sort by不能保证全局排序的结果,只能保证在每个 Reducer 输出的文件内部是有序的,并且sort by 执行过程中进入每一个Reducer的数据是随机的。
distribute by 并不直接进行排序,而是决定 MapReduce 任务中的数据分发。distribute by 会根据指定的列将数据分发到不同的 Reducer 上,保证相同的键值会被分发到同一个 Reducer。通常,我们会和 sort by 一起使用 distribute by,以达到更好的排序效果。

6.六、大致描述一下Hive中如何创建分区表,以及使用分区表的好处是什么?

1.创建分区表: 通过partition by 关键字结合相关的分区字段来创建分区表
2.分区表的好处:
首先先明确一下分区表什么。分区表将一个表按某个字段进行划分,这里和MapReduce的分区其实并没有什么区别。将一整块大数据分成了许许多多的小数据。
查询和修改都变的方便了,可以按照分区字段直接定位。

答案2

Hive 中的分区表实质上就是在HDFS中将表的数据进行分目录管理,从而达到提升查询效率的目的。分区表在建表的时候就要去指定,通过partitioned by 关键字结合分区字段来创建分区表。分区表可以声明多级分区表。
分区表的主要好处在于大概有三个方面,提高查询效率、降低存储成本、方便数据管等。
当你在查询数据时,如果你的查询条件包含了分区列,那么 Hive 只需要读取满足条件的分区的数据,而不需要读取整个表的数据。这样可以大大提高查询效率。
你可以为不同的分区设置不同的存储格式和压缩算法,以降低存储成本。例如,对于历史数据,你可以选择更高的压缩比例,以节省存储空间。
分区还可以让你更方便地管理数据。例如,你可以单独删除或者归档某个分区的数据,而不影响其他分区。
虽然分区表的优点很明显,但是过度分区可能会导致元数据的管理成本增加,影响查询性能。因此,设计分区时应该考虑到表的大小、查询模式和数据的生命周期等因素。

7.给分区表加载数据的方式有哪些?

这里要区分一下,分区表有两种,一种是静态分区,一种是动态分区。

  • 动态分区的主要就是将一张大表优化为许许多多的小表,注意前提,这时大表已经存在,只是需要做分解。所以加载的话,就是将整个表的数据插入分区表。
  • 静态分区,因为他是创建时候的表,所以既可以来自load也可以来自insert。

答案2

在 Hive 中,加载数据及创建分区主要有两种场景,分别是静态分区和动态分区
针对静态分区加载数据场景,使用load或者insert都可以,但是需要注意的是在加载数据的同时要对分区字段也要赋值,对分区字段赋值其实也是创建分区的过程。这个过程需要手动赋值进行操作。
针对动态分区加载数据场景,可以依赖特定的查询结果往分区表中插入数据及自动的创建分区。需要注意的是这种场景要求分区字段必须来源被查询的表中,以及整个分区表中的数据也是来自于被查询的表。

8.在使用分区表的同时需要注意什么问题,我们定义的分区是越多越好吗

在使用 Hive 分区表时,有几个重要的注意事项:

分区数量:虽然更多的分区可以提高查询效率,但是过度分区可能会导致元数据的管理成本增加,影响查询性能。Hive 的元数据存储在元数据存储中,如果分区数量过多,可能会使得元数据存储过载,造成性能瓶颈。一般来说,一个表的分区数量最好不要超过几万个。

数据倾斜:如果分区键的选择不合理,可能会导致数据倾斜,即一部分分区的数据量远大于其他分区。数据倾斜会严重影响查询性能和资源利用率。因此,你应该选择一个可以均匀分布数据的键作为分区键。

分区维护:随着时间的推移,可能会有新的分区加入,也可能会有旧的分区被删除。你需要确保有足够的资源和策略来管理这些分区,例如,定期归档或者删除旧的分区,以释放存储空间。

总的来说,分区是一种强大的工具,可以大大提高查询效率和数据管理的便利性。但是,你也需要小心地选择分区键和数量,以避免数据倾斜和过度分区的问题。同时,你也需要有足够的资源和策略来管理和维护分区。

9.Hive中的分桶表怎么创建,什么情况下会使用分桶表

在 Hive 中,你可以创建被“桶”划分的表,我们称之为分桶表。与分区表类似,分桶表是另一种细粒度的数据分隔策略。桶的数目在创建表时定义,并且不会随着数据的增加而改变。
创建分桶表的语法如下:
CREATE TABLE table_name (column1 type1, column2 type2,…)
CLUSTERED BY (column_name) INTO num_buckets BUCKETS;
例如,如果你有一个订单表,你可以根据订单 id 进行分桶,创建语句如下:
CREATE TABLE orders (order_id INT, product_id INT, price FLOAT)
CLUSTERED BY (order_id) INTO 64 BUCKETS;
在这个例子中,所有的订单根据 order_id 列的值被划分到 64 个桶中。每个桶都对应一个 HDFS 文件,具有相同 order_id 值的订单会被放入同一个桶。

那么在什么情况下会使用分桶表呢?

数据倾斜问题:在大数据处理中,数据倾斜是一个常见的问题,数据倾斜意味着某些键值的数据量远大于其他键值,这会导致资源利用不均。通过分桶,我们可以将数据更均匀地分布到不同的桶中,从而减轻数据倾斜的问题。

优化特定类型的查询:例如,对于 join 操作,如果两个表都按照 join 列进行了分桶,并且桶的数量相同,那么 Hive 可以在每个桶上单独进行 join,从而并行处理多个桶,提高查询效率。

采样查询:Hive 提供了一种基于桶的采样机制,可以只读取一个或者多个桶的数据。这对于在大数据集上进行快速探索或者调试非常有用。

但是需要注意的是,分桶需要更精细的设计和管理,不适合所有情况。并且,分桶不能替代分区,分区和分桶在数据管理和查询优化方面有各自的优点,通常会一起使用。

10 分桶与分区的区别

分桶能控制的只有桶的个数和按照的列,而分配规则由Map决定
分区则更细化,不规定个数。
分桶的桶Join支持大表的MapJoin而分区不行

11. 列举常用的单行函数

round
rand
ceil floor
substring
current_date
date
datediff date_add

12.描述一下Hive中实现行转列 和 列转行的思路,一般都用什么函数实现上述两种需求

行转列: collect_Set/collect_list

列转行: explode炸裂

行转列:在 Hive 中,行转列通常使用聚合函数,例如 collect_set 或 collect_list。这些函数可以将特定列的多个行值聚合成一个集合或列表。例如,如果有一个包含用户 ID 和他们购买的商品的表,你可以使用如下查询将每个用户购买的所有商品聚合到一个列表中:
SELECT user_id, collect_list(product) as product_list FROM purchasesGROUP BY user_id;
这将生成一个新的表,其中每一行对应一个用户 ID,产品列则包含该用户购买的所有产品的列表,这样就实现了从行到列的转换。

列转行:在 Hive 中,列转行通常使用 explode 函数。当你有一列是数组或 map 类型的数据,你可以使用 explode 函数将其展开为多行。例如,如果有一个表包含用户 ID 和他们购买的商品列表,你可以使用如下查询将商品列表展开为多行:
SELECT user_id, explode(product_list) as productFROM purchases;
这将为每个用户和每个商品生成一行,也就是将商品列表展开为多行,实现了从列到行的转换。但是如果列转行后想要和原表中的数据进行对应的话需要结合lateral view进行侧写来完成。

13.你是如何理解开窗函数的,概括一下开窗的本质

观察开窗,首先看一下聚合函数group by的区别

聚合函数:group by通过修改表结构来改变表的内容
开窗函数:通过partition by orderby等,不需要修改表结构从而对特定窗口内的数据进行计算.或者说开窗是加强版的聚合。
在原表的操作上直接进行聚合操作,同时并不修改表结构,并且每一行都能得到一个结果,从而得到聚合后的结果。

  • 1.表结构 聚合直接修改表结构达到聚合(1对多) 开窗不修改表结构,直接在原表基础上进行操作
  • 2.结果 聚合之后 未参与分组的列只能通过聚合函数来进行表现,而开窗的partitionby和

开窗函数(Window Functions)是 SQL 的一部分,用于处理比普通的聚合查询更复杂的数据分析任务。开窗函数在进行计算时,会为输入的每一行定义一个"窗口",这个窗口内的行集合是这一行的函数计算的基础。
一个窗口函数的执行可以分为三个步骤:
分区:首先,所有的行会根据 PARTITION BY 子句进行分区,具有相同 PARTITION BY 表达式值的行属于同一分区。

排序:然后,每个分区中的行会根据 ORDER BY 子句进行排序。

窗口定义:最后,对于每一行,都会在其所在分区内定义一个窗口。这个窗口由 ROWS 或 RANGE 子句定义,这个窗口内的行就是该行的窗口函数计算的基础。

窗口函数的强大之处在于,尽管它们进行的是聚合操作(比如求和、计数、找最大/最小值等),但它们并不像普通的聚合函数那样将多行聚合成一行,而是为输入的每一行都返回一个结果。这样,就可以在保留详细信息的同时进行聚合分析。
例如,你可以使用窗口函数来计算每个用户的购买总额,并与其他用户的购买总额进行比较,以此来找出购买最多的用户。在这个例子中,每一行(即每一个用户)的窗口是由该用户的所有购买组成的,窗口函数是求和函数,用来计算窗口内的购买总额。
总的来说,开窗函数的本质是通过为每一行定义一个"窗口"(也就是一组相关联的行),然后对这个窗口进行聚合计算,为每一行返回一个结果,以此来进行更复杂的数据分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/918941.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot 2.7 集成 Netty 4 模拟服务端与客户端通讯入门教程

文章目录 1 摘要2 核心 Maven 依赖3 核心代码3.1 服务端事务处理器 (DemoNettyServerHandler)3.2 服务端连接类(InitNettyServer)3.3 客户端事务处理器(DemoNettyClientHandler)3.4 客户端连接类(DemoNettyClient) 4 测试4.1 测试流程4.2 测试结果4.3 测试结论 5 推荐参考资料6…

Datax、Datax-web 安装部署

Datax安装(Windows) 1、源码地址:GitHub - alibaba/DataX: DataX是阿里云DataWorks数据集成的开源版本。 2、下载安装包并解压(安装前需有jdk、python开发环境):https://github.com/alibaba/DataX/archiv…

游戏开发服务器选型的横向对比

来源一个某乎的作者,貌似来自台湾 上篇介绍了go版本的游戏服务器,这篇介绍下其它语言版本: SkynetkbengineNoahGameFramePomeloPinusET使用的语言C/LuaCCNodejsTypeScriptC#概述云风前辈开源的框架mmo框架server一个快速的、可扩展的、分布…

【Prometheus】概述及部署

目录 Prometheus 概述 Prometheus 的生态组件 Prometheus 的工作模式 Prometheus 的工作流程 Prometheus 的局限性 部署 Prometheus Prometheust Server 端安装和相关配置 部署 Exporters 监控 MySQL 配置示例 监控 Nginx 配置示例 部署 Grafana 进行展示 部署 Pro…

Java如何调用接口API并返回数据(两种方法)

Java如何调用接口API并返回数据(两种方法) java处理请求接口后返回的json数据-直接处理json字符串 处理思路: 将返回的数据接收到一个String对象中(有时候需要自己选择性的取舍接收) 再将string转换为JSONObject对象 …

Shiro学习总结

第一章 入门概述 1.概念 shiro是一个Java安全框架,可以完成:认证、授权、加密、会话管理、与web集成、缓存… 2.优势 ● 易于使用,构建简单 ● 功能全面 ● 灵活,可以在任何应用程序环境中工作,并且不需要依赖它们…

log4框架

1.log4cplus基本元素 Layouts :控制输出消息的格式。 Appenders :输出位置。 Logger :日志对象。 Priorities :优先权,包括TRACE, DEBUG, INFO, WARNING, ERROR, FATAL。 2.log4cplus基本结构 3. 使用步骤&am…

2023年7月最新道路矢量数据(全国/分省/分城市)

2023年7月最新道路矢量数据(全国/分省/分城市) 道路数据是我们在各项研究中经常使用的数据!道路数据虽然很常用,但是却基本没有能下载最近年份道路数据的网站,所以很多人不知道如何获到道路数据。 本次我们为大家推…

【80天学习完《深入理解计算机系统》】第九天 3.2 数据传送指令【mov】【栈和堆】【leaq】【一元操作】【二元操作】

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录)   文章字体风格: 红色文字表示&#…

智慧充电桩物联网方案架构

智慧充电桩物联网采用“云-管-边-端”的边缘计算物联网架构,融合5G、AI、Wi-Fi 6等技术,实现充电基础设施由数字化向智能化演进。智慧充电桩物联网方案架构设计,如下图所示: 云端: 物联网平台具备广泛协议的南向接入…

.NET 最便捷的Log4Net日志记录器

最便捷的Log4Net使用方法 LOG4NET 配置日志记录器开始引用nuget LOG4NET 配置日志记录器 Apache log4net 库是一个帮助程序员将日志语句输出到各种的工具 的输出目标。log4net是优秀的Apachelog4j™框架的移植 Microsoft.NET 运行时。我们保持了与原始log4j相似的框架 同时利…

【javaweb】学习日记Day5 - 请求响应 分层解耦 IOC DI 三层架构

目录 一、请求响应 1、请求 (1)简单参数 ① GET请求 ② POST请求 ③ 假如形参与请求参数不一致 (2)实体参数 ① 简单实体对象 ② 复杂实体对象 (3)数组参数 (4)集合参数 …

研究生定向培养学徒对象及说明

研究生定向培养学徒开始招募啦,招募对象可以 1、免费学习 2、全真企业项目实战 3、拥有就业推荐机会 4、提供副业机会 研究生定向培养学徒报名时间: 2023年8月22日-2023年9月10日 研究生定向培养学徒招募对象: 1.毕业年度研究…

如何在地平线J5上部署RTA-VRTE v2.2应用程序

在地平线J5上部署RTA-VRTE v2.2应用程序流程图: 虽然在J5上使用ifconfig 命令看不到can0和can1被启动 登陆系统后ifconfig -a仍然能看到can0和can1。

Python(八十四)字符串的切片操作

❤️ 专栏简介:本专栏记录了我个人从零开始学习Python编程的过程。在这个专栏中,我将分享我在学习Python的过程中的学习笔记、学习路线以及各个知识点。 ☀️ 专栏适用人群 :本专栏适用于希望学习Python编程的初学者和有一定编程基础的人。无…

Linux TCP协议——三次握手,四次挥手

一、TCP协议介绍 TCP协议是可靠的、面向连接的、基于字节流的传输层通信协议。 TCP的头部结构: 源/目的端口号: 表示数据是从哪个进程来, 到哪个进程去;(tcp是传输层的协议,端与端之间的数据传输,在TCP和UDP协议当中不会体现出I…

基于paddleocr的文档识别

1、版面分析 使用轻量模型PP-PicoDet检测模型实现版面各种类别的检测。 数据集: 英文:publaynet数据集的训练集合中包含35万张图像,验证集合中包含1.1万张图像。总共包含5个类别。 中文:CDLA据集的训练集合中包含5000张图像&a…

Vue3:通过路由写多个页面,通过不同的路径可以进入不同的页面

前言 Vue3:想通过路由写2个页面,不同的路径可以进入不同的页面 实现步骤 1、创建Vue3项目 通过脚手架创建一个Vue3的项目,然后在此基础上对文件进行增删改,修改成自己需要的项目框架 2、views文件夹 对应 页面文件 如果需要…

网络编程——网络基础知识

目录 一、网络历史两个重要名词1.1 阿帕网1.2 TCP/IP协议 二、局域网和广域网三、IP地址3.1 基本概念3.2 划分(IPV4)3.3 特殊IP地址3.4 子网掩码3.5 重新组网 四、网络模型4.1 网络的体系结构:4.2 OSI与TCP/IP模型4.2.1 OSI模型4.2.2 TCP/IP模型4.2.3 OSI和TCP/IP模…

C++,类的特殊函数练习

设计一个Per类&#xff0c;类中包含私有成员:姓名、年龄、指针成员身高、体重&#xff0c;再设计一个Stu类&#xff0c;类中包含私有成员:成绩、Per类对象p1&#xff0c;设计这两个类的构造函数、析构函数和拷贝构造函数。 #include <iostream> using namespace std;cla…