1999年以后的nhanes数据都是以xpt文件格式发布的,而更早的数据有很多是以dat原始数据格式发布,需要将原始数据转为数据表以做进一步统计分析。
以 NHANES III 为例,其中有一个数据Household Youth File
,包含3个数据文件youth.dat
, youth.sas
, YOUTH-acc.pdf
。YOUTH-acc.pdf
是这个数据的概述报告,可以从这个文件找到数据的概况信息,比如样本数量,以及一些代码的含义,比如DMARACER
这个变量标识种族,在原始数据中的位置是13
,只有1个字符,就是用代码来表示不同种族的:1
表示’White’, 2
表示’Black’, 3
表示’Other’, 8
表示’Mexican-American of unknown race’。youth.sas
是数据解析的重点,这个文件描述了原始数据的格式,这是一个文本文件,内容为:
FILENAME YOUTH "D:\Questionnaire\DAT\YOUTH.DAT" LRECL=2103;
*** LRECL includes 2 positions for CRLF, assuming use of PC SAS;
DATA WORK;
INFILE YOUTH MISSOVER;
LENGTH
SEQN 7
DMPFSEQ 5
DMPSTAT 3
DMARETHN 3
DMARACER 3
DMAETHNR 3
HSSEX 3
HSDOIMO 3
HSAGEIR 3
HSAGEU 3
HSAITMOR 4
HSFSIZER 3
HSHSIZER 3
DMPCNTYR 3
DMPFIPSR 3
DMPMETRO 3
DMPCREGN 3
DMPPIR 8
...
HYK9EO 4
HYK9FO 4
HYK11AO $6
HYK12SO 4
HYM1 3
HYM2 3
HYM3 3
;
FORMAT
DMPPIR Z6.3
WTPFQX6 Z9.2
WTPFEX6 Z9.2
WTPFHX6 Z9.2
WTPFALG6 Z9.2
WTPFCNS6 Z9.2
WTPFSD6 Z9.2
WTPFMD6 Z9.2
WTPFHSD6 Z9.2
WTPFHMD6 Z9.2
WTPFQX1 Z9.2
WTPFEX1 Z9.2
WTPFHX1 Z9.2
WTPFALG1 Z9.2
WTPFCNS1 Z9.2
WTPFSD1 Z9.2
WTPFMD1 Z9.2
WTPFHSD1 Z9.2
WTPFHMD1 Z9.2
WTPFQX2 Z9.2
WTPFEX2 Z9.2
...
WTPXRP43 Z9.2
WTPXRP44 Z9.2
WTPXRP45 Z9.2
WTPXRP46 Z9.2
WTPXRP47 Z9.2
WTPXRP48 Z9.2
WTPXRP49 Z9.2
WTPXRP50 Z9.2
WTPXRP51 Z9.2
WTPXRP52 Z9.2
;
INPUT
SEQN 1-5
DMPFSEQ 6-10
DMPSTAT 11
DMARETHN 12
DMARACER 13
DMAETHNR 14
HSSEX 15
HSDOIMO 16-17
HSAGEIR 18-19
HSAGEU 20
HSAITMOR 21-24
HSFSIZER 25-26
HSHSIZER 27-28
DMPCNTYR 29-31
DMPFIPSR 32-33
DMPMETRO 34
DMPCREGN 35
DMPPIR 36-41
...
HYK9DO 2075-2078
HYK9EO 2079-2082
HYK9FO 2083-2086
HYK11AO 2087-2092
HYK12SO 2093-2097
HYM1 2098-2099
HYM2 2100
HYM3 2101
;
LABEL
SEQN = "Sequence number"
DMPFSEQ = "Family sequence number"
DMPSTAT = "Examination/interview status"
DMARETHN = "Race-ethnicity"
DMARACER = "Race"
DMAETHNR = "Ethnicity"
HSSEX = "Sex"
HSDOIMO = "Date of screener: month"
HSAGEIR = "Age at interview (screener) - qty"
HSAGEU = "Age at interview (screener) - unit"
HSAITMOR = "Age in months at interview (screener)"
HSFSIZER = "Family size (persons in family)"
HSHSIZER = "Household size (persons in dwelling)"
DMPCNTYR = "County code"
DMPFIPSR = "FIPS code for State"
DMPMETRO = "Rural/urban code based on USDA code"
DMPCREGN = "Census region, weighting(Texas in south)"
DMPPIR = "Poverty Income Ratio (unimputed income)"
...
HYK9DO = "Primary drug class code-9th"
HYK9EO = "Secondary drug class code-9th"
HYK9FO = "Tertiary drug class code-9th"
HYK11AO = "ICD-9-CM code-9th"
HYK12SO = "For how long been taking (days)-9th"
HYM1 = "Main respondents relationship to SP"
HYM2 = "Was SP present during any of interview"
HYM3 = "Quality of interview"
;
可见每一个区段是用区段名
和;
包裹的,我们可以根据INPUT
段的内容对原始数据进行处理。youth.dat
就是原始数据文件。
定义一个sas解析函数:
# 定义工具函数,解析 sas 文件数据格式
import re
def parse_sas_file(filename):
with open(filename, 'r') as file:
sas_content = file.read()
# 使用正则表达式提取所需内容
pattern = r'INPUT(.*?)\;'
match = re.search(pattern, sas_content, re.DOTALL)
if match:
input_lines = match.group(1)
else:
input_lines = ""
input_lines = input_lines.strip().splitlines()
columns_info = {}
for line in input_lines:
name, position_range = line.split()
if '-' in position_range:
start, end = position_range.split('-')
start, end = int(start) - 1, int(end)
else:
start = int(position_range) - 1
end = start + 1
columns_info[name] = {
'start': start,
'end': end
}
return columns_info
运行一下:
sas_file_name = 'nhanes3/youth.sas'
dat_file_name = 'nhanes3/youth.dat'
columns_info = parse_sas_file(sas_file_name)
columns_info
输出为:
{'SEQN': {'start': 0, 'end': 5},
'DMPFSEQ': {'start': 5, 'end': 10},
'DMPSTAT': {'start': 10, 'end': 11},
'DMARETHN': {'start': 11, 'end': 12},
'DMARACER': {'start': 12, 'end': 13},
'DMAETHNR': {'start': 13, 'end': 14},
'HSSEX': {'start': 14, 'end': 15},
'HSDOIMO': {'start': 15, 'end': 17},
'HSAGEIR': {'start': 17, 'end': 19},
'HSAGEU': {'start': 19, 'end': 20},
'HSAITMOR': {'start': 20, 'end': 24},
'HSFSIZER': {'start': 24, 'end': 26},
'HSHSIZER': {'start': 26, 'end': 28},
'DMPCNTYR': {'start': 28, 'end': 31},
'DMPFIPSR': {'start': 31, 'end': 33},
'DMPMETRO': {'start': 33, 'end': 34},
'DMPCREGN': {'start': 34, 'end': 35},
'DMPPIR': {'start': 35, 'end': 41},
'SDPPHASE': {'start': 41, 'end': 42},
'SDPPSU6': {'start': 42, 'end': 43},
'SDPSTRA6': {'start': 43, 'end': 45},
'SDPPSU1': {'start': 45, 'end': 46},
'SDPSTRA1': {'start': 46, 'end': 48},
'SDPPSU2': {'start': 48, 'end': 49},
'SDPSTRA2': {'start': 49, 'end': 51},
...
'HYK11AO': {'start': 2086, 'end': 2092},
'HYK12SO': {'start': 2092, 'end': 2097},
'HYM1': {'start': 2097, 'end': 2099},
'HYM2': {'start': 2099, 'end': 2100},
'HYM3': {'start': 2100, 'end': 2101}}
再定义一个转为pandas数据帧并存为csv的函数:
import pandas as pd
def dat2csv(dat_file_name, columns_info, csv_file_name):
# 读取并解析dat文件
rows = []
with open(dat_file_name, 'r') as file:
for line in file:
temp_dict = {}
for col, positions in columns_info.items():
temp_dict[col] = line[positions["start"]: positions["end"]].strip()
rows.append(temp_dict)
# 转换为 Pandas DataFrame
data = pd.DataFrame(rows)
data.to_csv(csv_file_name)
运行一下:
# 将 dat 文件转存为 csv 文件
dat2csv(dat_file_name, columns_info, 'nhanes3/youth.csv')
df = pd.read_csv('nhanes3/youth.csv')
df.head()
输出为:
公众号 | FunIO
微信搜一搜 “funio”,发现更多精彩内容。
个人博客 | blog.boringhex.top