Python科研绘图--Task02

news2025/1/16 8:22:08

目录

图形元素

画布 (fifigure)。

坐标图形 (axes),也称为子图。

轴 (axis) :数据轴对象,即坐标轴线。

刻度 (tick),即刻度对象。

图层顺序

轴比例和刻度

轴比例

刻度位置和刻度格式

坐标系

直角坐标系

极坐标系

地理坐标系

多子图的绘制 

subplot() 函数

add_subplot() 函数

 subplots() 函数

 axes()

 subplot2grid() 函数

 gridspec.GridSpec() 函数

 subplot_mosaic() 函数

常见的图的类型

结果保存


图形元素

  • 画布 (fifigure)

它既可以代表图形本身进行图的绘制(包含图例、图名、数据标记等多个图形艺术对象,又可以 被划分为多个子区域,而每个子区域可用于单独图形类型的 ( 子图 ) 绘制。用户可以在画布 (fifigure) 中设置画布大小(fifigsize)、分辨率(dpi)和背景颜色等其他参数。

  • 坐标图形 (axes),也称为子图。

作为 Matplotlib 的绘图核心,它主要为绘图数据提供展示区域,同时包括组成图的众多艺术对象 (artist)。在大多数情况下,一个画布 (fifigure) 对象中包含一个子图区域,子图区域由上、下、左、右 4 个轴脊以及其他构成子图的组成元素组成。

  • (axis) :数据轴对象,即坐标轴线。

每个轴对象都含有位置( locator )对象和格式(formatter )对象,它们分别用于控制坐标轴刻度的位置和格式。
  • 刻度 (tick),即刻度对象。

刻度对象包括主刻度(Major tick)、次刻度(Minor tick)、主刻度标签(Major tick label)和次刻度标签(Minor tick label)。

图层顺序

Matplotlib 采用的是面向对象的绘图方式。在同一个坐标图形中绘制不同的数据图层时,

Matplotlib 可通过设置每个绘图函数中的 zorder 参数来设定不同的图层。

轴比例和刻度

Matplotlib 中 的每个坐标图形对象至少包含两个轴对象,它们分别用来表示 X 轴和 Y 轴。轴对象还可以控制轴比例(axis scale )、刻度位置( tick locator )和刻度格式( tick formatter )。

轴比例

轴比例规定了数值与给定轴之间的映射方式,即数值在轴上以何种方式进行缩放。Matplotlib 中的默认轴比例方式为线性( linear )方式,其他诸如 log logit symlog 和自定义函数比例(function scale )方式也是常用的轴比例方式。

刻度位置和刻度格式

刻度位置和刻度格式分别规定了每个轴对象上刻度的位置与格式。

坐标系

常见的坐标系有直角坐标系( rectangular coordinate system )、极坐标系( polar coordinate
system )和地理坐标系( geographic coordinate system )。

直角坐标系

Matplotlib 中,我们可通过设置绘图函数(如 add_subplot() )中的参数 projection='3d' 或引入 axes3d 对象来绘制三维直角坐标系。

极坐标系

地理坐标系

Matplotlib 地理坐标系中的地理投影方式较少,仅有 Aitoffff 投影、 Hammer 投影、 Lambert
投影和 Mollweide 投影 4 种。

多子图的绘制 

subplot() 函数

import matplotlib.pyplot as plt
ax1 = plt.subplot(212)
ax2 = plt.subplot(221)
ax3 = plt.subplot(222)

add_subplot() 函数

import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(212)
ax2 = fig.add_subplot(221)
ax3 = fig.add_subplot(222)

 subplots() 函数

fig, axs = plt.subplots(2, 3, sharex=True, sharey=True)
axs[0,0].text(0.5, 0.5, "subplots(0,0)")
axs[0,1].text(0.5, 0.5, "subplots(0,1)")
axs[0,2].text(0.5, 0.5, "subplots(0,2)")
axs[1,0].text(0.5, 0.5, "subplots(1,0)")
axs[1,1].text(0.5, 0.5, "subplots(1,1)")
axs[1,2].text(0.5, 0.5, "subplots(1,2)")

 axes()

import numpy as np
import matplotlib.pyplot as plt
from colormaps import parula
np.random.seed(19680801)
plt.subplot(211)
plt.imshow(np.random.random((100, 100)),cmap=parula)
plt.subplot(212)
plt.imshow(np.random.random((100, 100)),cmap=parula)
plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
cax = plt.axes(rect=[0.8, 0.15, 0.05, 0.6])
plt.colorbar(cax=cax)

 subplot2grid() 函数

import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = plt.subplot2grid((3, 3), (0, 0), colspan=3)
ax2 = plt.subplot2grid((3, 3), (1, 0), colspan=2)
ax3 = plt.subplot2grid((3, 3), (1, 2), rowspan=2)
ax4 = plt.subplot2grid((3, 3), (2, 0))
ax5 = plt.subplot2grid((3, 3), (2, 1))

 gridspec.GridSpec() 函数

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
fig = plt.figure(constrained_layout=True)
gspec = gridspec.GridSpec(ncols=3, nrows=3, figure=fig)
ax1=plt.subplot(gspec[0,:])
ax2=plt.subplot(gspec[1,0:2])
ax3=plt.subplot(gspec[1:,2])
ax4=plt.subplot(gspec[2,0])
ax5=plt.subplot(gspec[-1,-2])

 subplot_mosaic() 函数

def annotate_axes(ax, text, fontsize=fontsize):
    ax.text(0.5, 0.5, text, transform=ax.transAxes,
            fontsize=fontsize, alpha=0.75, ha="center",
            va="center", weight="bold")
fig, axd = plt.subplot_mosaic([['upper left', 'right'],
            ['lower left', 'right']],figsize=(6,3), 
            constrained_layout=True)
for k in axd:
    annotate_axes(axd[k], f'axd["{k}"]', fontsize=14)

常见的图的类型

结果保存

Matplotlib 绘制的图对象可以保存为多种格式,如 PNG JPG TIFF PDF SVG 等。注意,结果保存函数 savefifig() 必须出现在 show() 函数之前,可避免保存结果为空白等问题。另外,在使用 savefifig() 的过程中,我们需要设置参数 bbox_inches='tight' ,去除图表周围的空白部分。将图对象保存为 PDF 文件和 PNG 文件的示例代码如下。
fig.savefig('结果.pdf',bbox_inches='tight')
fig.savefig('结果.png', bbox_inches='tight',dpi=300)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/914724.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[oneAPI] 基于BERT预训练模型的SQuAD问答任务

[oneAPI] 基于BERT预训练模型的SQuAD问答任务 Intel Optimization for PyTorch and Intel DevCloud for oneAPI基于BERT预训练模型的SQuAD问答任务语料介绍数据下载构建 模型 结果参考资料 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Int…

多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测

多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测。 模型描…

算法通关村第九关——中序遍历与搜索树

1 中序遍历和搜索树原理 二叉搜索树按照中序遍历正好是一个递增序列。其比较规范的定义是: 若它的左子树不为空,则左子树上所有节点的值均小于它的根节点的值;若它的右子树不为空,则右子树所有节点的值均大于它的根节点的值&…

17.2 【Linux】通过 systemctl 管理服务

systemd这个启动服务的机制,是通过一支名为systemctl的指令来处理的。跟以前 systemV 需要 service / chkconfig / setup / init 等指令来协助不同, systemd 就是仅有systemctl 这个指令来处理而已。 17.2.1 通过 systemctl 管理单一服务 (s…

升级还是不升级?iPhone 15和iPhone 14 Plus性能比较

预览iPhone 15 Pro Max与三星Galaxy S23 Ultra之战是有正当理由的。显然,三星的旗舰智能手机为2023年的所有其他旗舰产品定下了基调——由于其超长的电池寿命和一流的摄像头,证明了它是最受欢迎的产品。 毫不奇怪,Galaxy S23 Ultra不仅是最好的照相手机之一,也是花钱能买到…

docker之DockerFile与网络

目录 DockerFile 构建步骤 基础知识 指令 实战:构建自己的centos 第一步:编写dockerfile文件 第二步:构建镜像文件 docker网络 原理 功能 网络模式 host模式 container模式 none模式 bridge模式 DockerFile dockerfile 是用来…

wireshark进行网络监听

一、实验目的: 1)掌握使用CCProxy配置代理服务器; 2)掌握使用wireshark抓取数据包; 3)能够对数据包进行简单的分析。 二、预备知识: 包括监听模式、代理服务器、中间人攻击等知识点&#xf…

【广州华锐视点】VR教学课件编辑工具有哪些用处?

随着科技的不断发展,教育领域也在不断地进行创新。在众多的创新技术中,虚拟现实(VR)技术的应用为教育带来了前所未有的变革。广州华锐视点开发的VR教学课件编辑工具作为一种新型的教育工具,可以为我们的教学提供许多支持,从而提升…

redis基本介绍以及在node中使用

文章目录 引言一、什么是redis1. redis简介2. redis的特点3. redis的应用场景 二、redis在windows下安装1. 下载安装2.验证是否安装成功3. 配置环境变量 三、redis-cli常用命令介绍1. redis-cli2. keys *3. set key value4. get key5. exists key6. del key7. info8. flushdb9.…

硬件知识累计 TVS管选型 防止浪涌

1. 首先了解 浪涌 1.1 浪涌是什么 浪涌(electrical surge),顾名思义就是瞬间出现超出稳定值的峰值,它包括浪涌电压和浪涌电流。 浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是…

数据结构--递归与分治

汉诺塔分析&#xff1a; 以三层进行分析&#xff0c;大于三层分析情况是一样的。 #include <stdio.h>void move(int n,char x,char y,char z) {if(1 n){printf("%c---------->%c\n",x,z);}else{move(n-1,x,z,y);//将第n-1个盘子从x借助z移动到y printf(&q…

HBuilderX学习--运行第一个项目

HBuilderX&#xff0c;简称HX&#xff0c;是轻如编辑器、强如IDE的合体版本&#xff0c;它及轻巧、极速&#xff0c;强大的语法提示&#xff0c;提供比其他工具更优秀的vue支持大幅提升vue开发效率于一身(具体可看官方详细解释)… 一&#xff0c;HBuilderX下载安装 官网地址 …

前端基础(ES6 模块化)

目录 前言 复习 ES6 模块化导出导入 解构赋值 导入js文件 export default 全局注册 局部注册 前言 前面学习了js&#xff0c;引入方式使用的是<script s"XXX.js">&#xff0c;今天来学习引入文件的其他方式&#xff0c;使用ES6 模块化编程&#xff0c;…

浅谈泛在电力物联网发展形态与技术挑战

安科瑞 华楠 摘 要&#xff1a;泛在电力物联网是当前智能电网发展的一个方向。首先&#xff0c;总结了泛在电力物联网的主要作用和价值体现&#xff1b;其次&#xff0c;从智能电网各个环节概述了物联网技术在电力领域的已有研究和应用基础&#xff1b;进而&#xff0c;构思并…

Java接入支付宝支付

本文只接入了支付宝中的APP支付&#xff0c;如果要拓展更多支付方式的的话&#xff0c;请看文末补充 项目支付流程 前端发起创建订单请求后端接受请求创建订单&#xff0c;并将订单参数进行支付宝对应签名并返回前端拿到签名后调起支付宝支付 本文主要写的就是2的过程 前期准…

09 数据库开发-MySQL

文章目录 1 数据库概述2 MySQL概述2.1 MySQL安装2.1.1 解压&添加环境变量2.1.2 初始化MySQL2.1.3 注册MySQL服务2.1.4 启动MySQL服务2.1.5 修改默认账户密码2.1.6 登录MySQL 2.2 卸载MySQL2.3 连接服务器上部署的数据库2.4 数据模型2.5 SQL简介2.5.1 SQL通用语法2.3.2 分类…

【卷积神经网络】经典网络之 LeNet-5, AlexNet 与 VGG-16

随着计算机硬件的升级与性能的提高&#xff0c;运算量已不再是阻碍深度学习发展的难题。卷积神经网络&#xff08;Convolution Neural Network&#xff0c;CNN&#xff09;是深度学习中一项代表性的工作&#xff0c;其雏形是 1998 年 LeCun 提出的 LeNet-5 模型。如今&#xff…

Java后端开发面试题——微服务篇总结

Spring Cloud 5大组件有哪些&#xff1f; 随着SpringCloudAlibba在国内兴起 , 我们项目中使用了一些阿里巴巴的组件 注册中心/配置中心 Nacos 负载均衡 Ribbon 服务调用 Feign 服务保护 sentinel 服务网关 Gateway Ribbon负载均衡策略有哪些 ? RoundRobinRule&…

Selenium 捕获 console logs (Java)

目录 启用日志记录功能 有时候在进行自动化测试的时候控制台输出会帮忙定位问题&#xff0c;所以捕获控制台输出就显得很重要了~ 以下以selenium 4为例&#xff1a; 我们可以使用driver.manage().logs().get(LogType.BROWSER)代码在Selenium中检索日志&#xff0c;该代码将返回…

基于MATLAB开发AUTOSAR软件应用层Code mapping专题-part 5 Signal/States标签页介绍

这一篇我们说下signals和State这两个怎么搞做映射,那首先我们要知道什么是Signal和state,我们看下模型, 在原来的模型里我增加了标红的圆圈处delay模块,这个delay模块就是一个state模块,表示离散的一个状态,这个是个模型的基本概念,后续我有个专栏交接simulink建模,那…