Rides分布式缓存

news2024/11/16 7:54:41

分布式缓存

-- 基于Redis集群解决单机Redis存在的问题

单机的Redis存在四大问题:

1.Redis持久化

Redis有两种持久化方案:

  • RDB持久化

  • AOF持久化

1.1.RDB持久化

       RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。

1.1.1.执行时机

RDB持久化在四种情况下会执行:

  • 执行save命令

  • 执行bgsave命令

  • Redis停机时

  • 触发RDB条件时(配置中可自行进行更改)

1)save命令

执行下面的命令,可以立即执行一次RDB:

       save命令会导致主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

2)bgsave命令

下面的命令可以异步执行RDB:

 这个命令执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

3)停机时

Redis停机时会执行一次save命令,实现RDB持久化。

# 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1  
save 300 10  
save 60 10000 

4)触发RDB条件

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:

RDB的其它配置也可以在redis.conf文件中设置:

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes
​
# RDB文件名称
dbfilename dump.rdb  
​
# 文件保存的路径目录
dir ./ 

1.1.2.RDB原理

       bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。

fork采用的是copy-on-write技术:

  • 当主进程执行读操作时,访问共享内存;

  • 当主进程执行写操作时,则会拷贝一份数据,执行写操作。

1.1.3.小结

 RDB方式bgsave的基本流程?

  • fork主进程得到一个子进程,共享内存空间

  • 子进程读取内存数据并写入新的RDB文件

  • 用新RDB文件替换旧的RDB文件

RDB会在什么时候执行?save 60 1000代表什么含义?

  • 默认是服务停止时

  • 代表60秒内至少执行1000次修改则触发RDB

RDB的缺点?

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险

  • fork子进程、压缩、写出RDB文件都比较耗时

1.2.AOF持久化

1.2.1.AOF原理

        AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

 1.2.2.AOF配置

AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

三种策略对比:

 1.2.3.AOF文件重写

       因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。

       如图,AOF原本有三个命令,但是set num 123 set num 666都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。所以重写命令后,AOF文件内容就是:mset name jack num 666,Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

1.3.RDB与AOF对比

       RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用。

2.Redis主从

2.1.搭建主从架构

       单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

2.2Redis集群

1.单机安装Redis

首先需要安装Redis所需要的依赖:

yum install -y gcc tcl

例如,我放到了/tmp目录(任意目录):

解压缩:

tar -xvf redis-6.2.4.tar.gz

解压后:

进入redis目录:

cd redis-6.2.4

运行编译命令:

make && make install

如果没有出错,应该就安装成功了。

然后修改redis.conf文件中的一些配置:

# 绑定地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问
bind 0.0.0.0
# 数据库数量,设置为1
databases 1

启动Redis:

redis-server redis.conf

停止redis服务:

redis-cli shutdown

2.Redis主从集群

2.1.集群结构

我们搭建的主从集群结构如图:

共包含三个节点,一个主节点,两个从节点。

这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
193.168.150.1017001mster
193.168.150.1017002slave
193.168.150.1017003slave

2.2.准备实例和配置

       要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

1)创建目录

我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如图:

2)恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000

# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录

然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003
# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录

       修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

5)修改每个实例的声明IP

虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf

# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

2.3.启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:

 如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

2.4.开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>

  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):

    slaveof <masterip> <masterport>

注意在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:

2.5.测试

 执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123

  • 利用redis-cli连接7002,执行get num,再执行set num 666

  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。

 2.2.主从数据同步原理

2.2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

 这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid

  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

       因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据,因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset,master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了,master会将自己的replid和offset都发送给这个slaveslave保存这些信息。以后slave的replid就与master一致了,因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

 完整流程描述:

  • slave节点请求增量同步

  • master节点判断replid,发现不一致,拒绝增量同步

  • master将完整内存数据生成RDB,发送RDB到slave

  • slave清空本地数据,加载master的RDB

  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave

  • slave执行接收到的命令,保持与master之间的同步

2.2.2.增量同步

       全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

 那么master怎么知道slave与自己的数据差异在哪里呢?

2.2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

      这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖,repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset和slave已经拷贝到的offset:

 slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

 直到数组被填满:

       此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

 如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

       棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

 2.3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。

  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO

  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步

  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

 2.4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。

  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时

  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

3.Redis哨兵

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。

3.1.哨兵原理

3.1.1.集群结构和作用

哨兵的结构如图:

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作

  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主

  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

3.1.2.集群监控原理

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

•主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线

•客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。

3.1.3.集群故障恢复原理

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点

  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举

  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高

  • 最后是判断slave节点的运行id大小,越小优先级越高。

当选出一个新的master后,该如何实现切换呢?

流程如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master

  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。

  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

 3.1.4.小结

Sentinel的三个作用是什么?

  • 监控

  • 故障转移

  • 通知

Sentinel如何判断一个redis实例是否健康?

  • 每隔1秒发送一次ping命令,如果超过一定时间没有相向则认为是主观下线

  • 如果大多数sentinel都认为实例主观下线,则判定服务下线

故障转移步骤有哪些?

  • 首先选定一个slave作为新的master,执行slaveof no one

  • 然后让所有节点都执行slaveof 新master

  • 修改故障节点配置,添加slaveof 新master

3.2.搭建哨兵集群

3.2.1.集群结构

这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。如图:

三个sentinel实例信息如下:

节点IPPORT
s1192.168.150.10127001
s2192.168.150.10127002
s3192.168.150.10127003

3.2.2准备实例和配置

       要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

我们创建三个文件夹,名字分别叫s1、s2、s3:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3

如图:

 然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:

port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"

解读:

  • port 27001:是当前sentinel实例的端口

  • sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息

    • mymaster:主节点名称,自定义,任意写

    • 192.168.150.101 7001:主节点的ip和端口

    • 2:选举master时的quorum值

然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf

修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:

sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf

3.2.3.启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf

启动后:

 3.2.4.测试

尝试让master节点7001宕机,查看sentinel日志:

 查看7003的日志:

 查看7002的日志:

3.3.RedisTemplate

       在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

下面,我们通过一个测试来实现RedisTemplate集成哨兵机制。

3.3.2.引入依赖

在项目的pom文件中引入依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

3.3.3.配置Redis地址

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:
  redis:
    sentinel:
      master: mymaster
      nodes:
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003

3.3.4.配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取

  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica

  • REPLICA:从slave(replica)节点读取

  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

4.Redis分片集群

4.1.搭建分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:

分片集群特征:

  • 集群中有多个master,每个master保存不同数据

  • 每个master都可以有多个slave节点

  • master之间通过ping监测彼此健康状态

  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

搭建流程

4.1.集群结构

分片集群需要的节点数量较多,这里我们搭建一个最小的分片集群,包含3个master节点,每个master包含一个slave节点,结构如下:

 这里我们会在同一台虚拟机中开启6个redis实例,模拟分片集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002master
192.168.150.1017003master
192.168.150.1018001slave
192.168.150.1018002slave
192.168.150.1018003slave

4.2.准备实例和配置

        删除之前的7001、7002、7003这几个目录,重新创建出7001、7002、7003、8001、8002、8003目录:

# 进入/tmp目录
cd /tmp
# 删除旧的,避免配置干扰
rm -rf 7001 7002 7003
# 创建目录
mkdir 7001 7002 7003 8001 8002 8003

在/tmp下准备一个新的redis.conf文件,内容如下:

port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log

将这个文件拷贝到每个目录下:

# 进入/tmp目录
cd /tmp
# 执行拷贝
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf

修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:

# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf

4.3.启动

因为已经配置了后台启动模式,所以可以直接启动服务:

# 进入/tmp目录
cd /tmp
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf

通过ps查看状态:

ps -ef | grep redis

发现服务都已经正常启动:

如果要关闭所有进程,可以执行命令:

ps -ef | grep redis | awk '{print $2}' | xargs kill

或者(推荐这种方式):

printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown

4.4.创建集群

虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。

       我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。

1)Redis5.0之前

Redis5.0之前集群命令都是用redis安装包下的src/redis-trib.rb来实现的。因为redis-trib.rb是有ruby语言编写的所以需要安装ruby环境。

 # 安装依赖
 yum -y install zlib ruby rubygems
 gem install redis

然后通过命令来管理集群:

# 进入redis的src目录
cd /tmp/redis-6.2.4/src
# 创建集群
./redis-trib.rb create --replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

2)Redis5.0以后

我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:

redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003

命令说明:

  • redis-cli --cluster或者./redis-trib.rb:代表集群操作命令

  • create:代表是创建集群

  • --replicas 1或者--cluster-replicas 1 :指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1) 得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master

运行后的样子:

 这里输入yes,则集群开始创建:

 通过命令可以查看集群状态:

redis-cli -p 7001 cluster nodes

 4.5.测试

尝试连接7001节点,存储一个数据:

# 连接
redis-cli -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

结果悲剧了:

 集群操作时,需要给redis-cli加上-c参数才可以:

redis-cli -c -p 7001

这次可以了:

4.2.散列插槽

4.2.1.插槽原理

       Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

       数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分

  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

        如图,在7001这个节点执行set a 1时,对a做hash运算,对16384取余,得到的结果是15495,因此要存储到103节点,到了7003后,执行get num时,对num做hash运算,对16384取余,得到的结果是2765,因此需要切换到7001节点

4.2.1.小结

Redis如何判断某个key应该在哪个实例?

  • 将16384个插槽分配到不同的实例

  • 根据key的有效部分计算哈希值,对16384取余

  • 余数作为插槽,寻找插槽所在实例即可

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

4.3.集群伸缩

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

 比如,添加节点的命令:

 4.3.1.需求分析

需求:向集群中添加一个新的master节点,并向其中存储 num = 10

  • 启动一个新的redis实例,端口为7004

  • 添加7004到之前的集群,并作为一个master节点

  • 给7004节点分配插槽,使得num这个key可以存储到7004实例

这里需要两个新的功能:

  • 添加一个节点到集群中

  • 将部分插槽分配到新插槽

4.3.2.创建新的redis实例

创建一个文件夹:

mkdir 7004

拷贝配置文件:

cp redis.conf /7004

修改配置文件:

sed /s/6379/7004/g 7004/redis.conf

启动

redis-server 7004/redis.conf

4.3.3.添加新节点到redis

添加节点的语法如下:

执行命令:

redis-cli --cluster add-node  192.168.150.101:7004 192.168.150.101:7001

 通过命令查看集群状态:

redis-cli -p 7001 cluster nodes

如图,7004加入了集群,并且默认是一个master节点:

但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上

4.3.4.转移插槽

我们要将num存储到7004节点,因此需要先看看num的插槽是多少:

如上图所示,num的插槽为2765.

我们可以将0~3000的插槽从7001转移到7004,命令格式如下:

 具体命令如下:

建立连接:

得到下面的反馈:

询问要移动多少个插槽,我们计划是3000个:

新的问题来了:

 那个node来接收这些插槽??

显然是7004,那么7004节点的id是多少呢?

复制这个id,然后拷贝到刚才的控制台后:

这里询问,你的插槽是从哪里移动过来的?

  • all:代表全部,也就是三个节点各转移一部分

  • 具体的id:目标节点的id

  • done:没有了

这里我们要从7001获取,因此填写7001的id:

填完后,点击done,这样插槽转移就准备好了:

确认要转移吗?输入yes:

然后,通过命令查看结果:

可以看到:

目的达成。

4.4.故障转移

集群初识状态是这样的:

其中7001、7002、7003都是master,我们计划让7002宕机。

4.4.1.自动故障转移

当集群中有一个master宕机会发生什么呢?

直接停止一个redis实例,例如7002:

redis-cli -p 7002 shutdown

1)首先是该实例与其它实例失去连接

2)然后是疑似宕机:

3)最后是确定下线,自动提升一个slave为新的master:

4)当7002再次启动,就会变为一个slave节点了:

 4.4.2.手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:

这种failover命令可以指定三种模式:

  • 缺省:默认的流程,如图1~6歩

  • force:省略了对offset的一致性校验

  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位

步骤如下:

1)利用redis-cli连接7002这个节点

2)执行cluster failover命令

如图:

效果:

 4.5.RedisTemplate访问分片集群

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

1)引入redis的starter依赖

2)配置分片集群地址

3)配置读写分离

与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:

spring:
  redis:
    cluster:
      nodes:
        - 192.168.150.101:7001
        - 192.168.150.101:7002
        - 192.168.150.101:7003
        - 192.168.150.101:8001
        - 192.168.150.101:8002
        - 192.168.150.101:8003

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/909039.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从Web 2.0到Web 3.0,互联网有哪些变革?

文章目录 Web 2.0时代&#xff1a;用户参与和社交互动Web 3.0时代&#xff1a;语义化和智能化影响和展望 &#x1f389;欢迎来到Java学习路线专栏~从Web 2.0到Web 3.0&#xff0c;互联网有哪些变革&#xff1f; ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#x…

Docker容器与虚拟化技术:容器运行时说明与比较

目录 一、理论 1.容器运行时 2.容器运行时接口 3.容器运行时层级 4.容器运行时比较 5.强隔离容器 二、问题 1.K8S为何难以实现真正的多租户 三、总结 一、理论 1.容器运行时 &#xff08;1&#xff09;概念 Container Runtime 是运行于 k8s 集群每个节点中&#xff…

基于51单片机的八路抢答器Protues仿真设计

目录 一、设计背景 二、实现功能 三、仿真演示 四、源程序&#xff08;部分&#xff09; 一、设计背景 近年来随着科技的飞速发展&#xff0c;单片机的应用正在不断的走向深入。本文阐述了基于51单片机的八路抢答器设计。本设计中&#xff0c;51单片机充当了核心控制器的角…

HTML浪漫动态表白代码绚烂星空烟花+粉色大爱心+3D旋转相册+音乐(附源码)(三)

一. 前言 七夕马上就要到了&#xff0c;为了帮助大家高效表白&#xff0c;下面再给大家加几款实用的HTML浪漫表白代码(附源码)背景音乐&#xff0c;可用于520&#xff0c;情人节&#xff0c;生日&#xff0c;求爱表白等场景&#xff0c;可直接使用。 来吧&#xff0c;展示&am…

统一git使用方法,git状态变迁图,git commit提交规范

目录 说明 统一git使用方法 git状态变迁图 git commit 提交规范 说明 多次工作中多名员工不懂git多次技术分享&#xff0c;自行查资料学习git并使用&#xff0c;会出现使用各种偏僻的命令&#xff0c;异常问题无法解决&#xff1b;或出现带url的git合并提交。主要是学的不…

【腾讯云 TDSQL-C Serverless 产品测评】全面测评TDSQL-C Mysql Serverless

全面测评TDSQL-C Mysql Serverless 文章目录 全面测评TDSQL-C Mysql Serverless前言什么是TDSQL-C Mysql Serverless初始化 TDSQL-C Mysql Serverless新建数据库建立数据表开启外网访问 兼容性SQL文件 导入导出navicat 直接在线传输 构建测试环境准备Python测试脚本准备 Jmeter…

算法通关村第5关【白银】| 哈希和栈经典算法题

1.两个栈实现队列 思路&#xff1a;两个栈&#xff0c;一个输入栈&#xff0c;一个输出栈。 当需要输入的时候就往inStack中插入&#xff0c;需要输出就往outStack中输出&#xff0c;当输出栈是空就倒出输入栈的数据到输出栈中&#xff0c;这样就保证了后插入的数据从栈顶倒入…

MySQL数据库中间件Mycat介绍及下载安装(教程)

一&#xff0c;介绍 MyCat是开源的、活跃的、基于Java语言编写的MySQL数据库中间件。可以像使用MySQL一样来使用MyCat&#xff0c;对于开发人员来说根本感觉不到MyCat的存在。 开发人员只需要连接MyCat即可&#xff0c;而具体底层用到几台数据库&#xff0c;每一台数据库服务器…

数组分割(2023省蓝桥杯)n种讨论 JAVA

目录 1、题目描述&#xff1a;2、前言&#xff1a;3、动态规划&#xff08;bug)&#xff1a;3、递归 剪枝&#xff08;超时&#xff09;&#xff1a;4、数学&#xff08;正解&#xff09;&#xff1a; 1、题目描述&#xff1a; 小蓝有一个长度为 N 的数组 A [A0, A1,…, AN−…

3分钟通过日志定位bug,这个技能测试人必须会!

♥ 前 言 软件开发中通过日志记录程序的运行情况是一个开发的好习惯&#xff0c;对于错误排查和系统运维都有很大帮助。 Python 标准库自带了强大的 logging 日志模块&#xff0c;在各种 python 模块中得到广泛应用。 一、简单使用 1. 入门小案例 import logging loggin…

sync修饰符(重要)

作用&#xff1a;可以实现 子组件 与 父组件 数据的双向绑定 简化代码 特点&#xff1a;prop属性名&#xff0c;可以自定义&#xff0c;非固定为value 场景&#xff1a;封装弹框类的基础组件&#xff0c;visible属性 true显示 false隐藏 本质&#xff1a;就是 :属性名 和 updat…

SpringBoot 配置优先级

一般而言&#xff0c;SpringBoot支持配置文件进行配置&#xff0c;即在resources下的application.properties或application.yml。 关于配置优先级而言&#xff0c; application.properties>application.yml>application.yaml 另外JAVA程序程序还支持java系统配置和命令行…

lombok启动不生效(什么方法都试了,可还是不生效怎么办 ?! 救救我)

使用IntelliJ IDEA 2021.1.3&#xff08;Ultimate Edition&#xff09;时提示Lombok不生效 java: You aren’t using a compiler supported by lombok, so lombok will not work and has been disabled. 方式一&#xff1a;我们手动更新一下版本到以下版本 <!--Lombok--&…

水果音乐制作软件fl studio v21.1.0.3713 中文特别版

水果音乐制作软件fl studio v21.1.0.3713 中文特别版是一个功能完备的音乐制作环境&#xff0c;能够进行多轨道音频录制、音序处理和混音&#xff0c;可以帮助用户创作专业质量的音乐轨道。 借助 VST 托管、灵活的混音器、高级 MIDI 和 ReWire 支持&#xff0c;您将轻松驾驭各种…

第14章——FreeRTOS信号量

1.信号量的简介 信号量是一种解决同步问题的机制&#xff0c;可以实现对共享资源的有序访问。 信号量&#xff1a;用于传递状态&#xff08;区别于队列传递消息&#xff09; 信号量的计数值都有限制&#xff1a;限定最大值。 如果最大值被限定为1&#xff0c;那么它就是二值…

多种编程语言运行速度排名-10亿次除7求余数为0的数量

最佳方式是运行10次&#xff0c;取平均数&#xff0c;用时秒数显示3位小数。 因为第一次打开&#xff0c;可能CPU还没优化好&#xff0c;多次取平均&#xff0c;比较准确 第1次共10次&#xff0c;用时3秒&#xff0c;平均3秒 第2次共10次&#xff0c;用时4秒&#xff0c;平均3.…

搭建开发环境-操作系统篇(一键搭建开发环境)

概述 所谓工欲善其事必先利其器&#xff0c;搭环境往往是开发过程中卡出很多初学者的拦路虎。 对于很多老鸟来说&#xff0c;很多东西都已经习惯成自然&#xff0c;也就没有刻意和初学者说。但对于很多初学者&#xff0c;却是受益良多。 这个系列&#xff0c;先从操作系统开始…

string类写时拷贝

文章目录 1.string类拷贝构造函数的现代写法2.string类写时拷贝vs和g下string结构的不同vs下string的结构&#xff1a;g下string的结构 3.总结 1.string类拷贝构造函数的现代写法 string类拷贝构造函数的传统写法&#xff1a; string(const string& s){if (this ! &s)…

2023年每天都投递很多份简历,但都石沉大海,我还投吗?测试人该何去何从?

各大互联网公司的接连裁员&#xff0c;政策限制的行业接连消失&#xff0c;让今年的求职雪上加霜&#xff0c;想躺平却没有资本&#xff0c;还有人说软件测试岗位饱和了&#xff0c;对此很多求职者深信不疑&#xff0c;因为投出去的简历回复的越来越少了。 另一面企业招人真的…

计算机视觉--利用HSV和YIQ颜色空间处理图像噪声

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 今天我们将利用HSV和YIQ颜色空间处理图像噪声。在本次实验中&#xff0c;我们使用任意一张图片&#xff0c;通过RGB转HSV和YIQ的操作&#xff0c;加入了椒盐噪声并将其转换回RGB格式&#xff0c;最终实现对图像的噪声处理…