Istio入门体验系列——基于Istio的灰度发布实践

news2024/11/17 6:36:29


导言:灰度发布是指在项目迭代的过程中用平滑过渡的方式进行发布。灰度发布可以保证整体系统的稳定性,在初始发布的时候就可以发现、调整问题,以保证其影响度。作为Istio体验系列的第一站,本文基于Istio的流量治理机制,针对最简单的几种业务场景进行了实践,为后续的探索学习提供了一个思路和实践案例。

文章目录

  • 一、背景介绍
  • 1.1 灰度发布概述
  • 1.2 基于kubernetes的灰度发布
  • 1.3 基于Istio的灰度发布
  • 二、前置条件
  • 2.1 实验环境搭建
  • 2.2 服务网格监控组件的安装与配置
  • 2.2.1 Kiali的安装
  • 2.2.2 配置Kiali控制面板对外访问
  • 2.3 实验项目部署
  • 2.3.1 项目简介
  • 2.3.2 Weather Forecast 部署
  • 三、实验过程
  • 3.1 初始状态部署
  • 3.2 基于流量比例的路由
  • 3.3 基于请求内容的发布
  • 3.4 多服务同时发布
  • 3.5 自动化部署
  • 四、总结

一、背景介绍

1.1 灰度发布概述

在新版本上线时,不管是在技术上考虑产品的稳定性等因素,还是在商业上考虑新版本被用户接受的程度,直接将老版本全部升级是非常有风险的。所以一般的做法是,新老版本同时在线,新版本只切分少量流量出来,在确认新版本没有问题后,再逐步加大流量比例。这正是灰度发布要解决的问题。其核心是能配置一定的流量策略,将用户在同一个访问入口的流量导到不同的版本上。有如下几种典型场景。

  • 蓝绿发布

蓝绿发布是指不停止老版本,部署新版本,然后进行测试,确认没有问题之后,再将流量全量切到新版本,然后老版本同时也升级到新版本。这样做的好处是无需停机,并且风险较小。

20210219221322136.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

其发布的步骤大致如下:

  1. 部署版本1的应用(一开始的状态),所有外部请求的流量都打到这个版本上;
  2. 部署版本2的应用,版本2的代码与版本1不同(新功能、Bug修复等);
  3. 将流量从版本1切换到版本2,即流量从v1:v2为100:0,切换为0:100;
  4. 如果版本2存在问题,需要回滚到版本1,进行流量切换回v1:v2为100:0。

    • A/B测试
      A/B测试的场景比较明确,就是同时在线上部署A和B两个对等的版本来接收流量,按一定的目标选取策略让一部分用户使用A版本,让一部分用户使用B版本,收集这两部分用户的使用反馈,即对用户采样后做相关比较,通过分析数据来最终决定采用哪个版本。蓝绿发布则主要用于安全稳定地发布新版本应用,而A/B测试则是用来测试应用功能表现的一种方法。
    • 金丝雀发布
      金丝雀发布是指通过让一小部分用户流量引入的新版本进行测试,就像把一个金丝雀塞到瓦斯井里面一样,探测这个新版本在环境中是否可用,在观察到新版本没有问题后再增加切换的比例,直到全部切换完成,是一个渐变、尝试的过程。如在过程中出现任何问题,则可以中止并回滚到旧版本。最简单的方式是随机选择百分比请求到金丝雀版本,但在更复杂的方案下,则可以基于请求的内容、特定范围的用户或其他属性等。
      ![在这里插入图片描述][Image 1]

      20210219222820450.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

1.2 基于kubernetes的灰度发布

在Kubernetes环境下可以基于Pod的数量比例分配流量。如下图所示,B服务的两个版本v2和v1分别有2个和3个实例,当流量被均衡地分发到每个实例上时,前者可以得到40%的流量,后者可以得到60%的流量,从而达到流量在两个版本间分配的效果。
 

20210219223015381.png_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center


给v1和v2版本设置对应比例的Pod数量,依靠Kube-proxy把流量均衡地分发到目标后端,可以解决一个服务的多个版本分配流量的问题,但是限制非常明显:首先,要求分配的流量比例必须和Pod数量成比例,试想,基于这种方式支持 3:97 比例的流量基本上是不可能的;另外,这种方式不支持根据请求的内容来分配流量,比如要求Chrome浏览器发来的请求和IE浏览器发来的请求分别访问不同的版本。有没有一种更细粒度的分流方式?答案当然是有,Istio就可以。Istio叠加在Kubernetes之上,从机制上可以提供比Kubernetes更细的服务控制粒度及更强的服务管理能力。

1.3 基于Istio的灰度发布

Istio本身并没有关于灰度发布的规则定义,灰度发布只是流量治理规则的一种典型应用,在进行灰度发布时,只要写个简单的流量规则配置即可。Istio在每个Pod里都注入了一个Envoy,因而只要在控制面配置分流策略,对目标服务发起访问的每个Envoy便都可以执行流量策略,完成灰度发布功能。

在使用Istio实现灰度发布的情况下,流量路由和副本部署是两个完全独立的功能。服务的pod数量可以根据流量负载灵活伸缩,与版本流量路由的控制完全无关。这在自动缩放的情况下能够更加简单地管理金丝雀版本。Istio的路由规则非常灵活,可以支持细粒度控制流量百分比(例如,路由1%的流量而不需要100个pod),也可以使用其他规则来控制流量(例如,将特定用户的流量路由到金丝雀版本)。

为了更加直观的验证和说明,接下来我们就通过搭建实验环境来模拟各种业务场景下的灰度发布。

二、前置条件

2.1 实验环境搭建

由于个人电脑的网络和内存限制,本人是直接选择了在腾讯云服务器上安装Minikube和Kubectl,然后下载最新版本的Istio1.9,最后通过istioctl工具进行安装。安装过程不再赘述,具体可参考:
http://km.oa.com/group/34294/articles/show/410837

不过安装较新版本Istio的同学需要注意一下的是Istio 1.9 支持的kubernets版本要求不能低于v1.17,所以在用minikube启动kubernetes集群时必须指定好版本:

 
       
  1. $ minikube start --vm-driver=none --kubernetes-version v1.18.15

具体环境和版本清单如下:

  • 64位Cenos7.6:2核4G(最低配置要求)
  • Minikube == v1.17.1
  • Docker == v1.13.1
  • Kubernetes == v1.18.15
  • Istio == v1.9.0

2.2 服务网格监控组件的安装与配置

2.2.1 Kiali的安装

Kiali 是一个为 Istio 提供图形化界面和丰富观测功能的 Dashboard 的开源项目,其名称源于希腊语,意思是望远镜。用户利用 Kiali 可以监测网格内服务的实时工作状态,管理Istio的网络配置,快速识别网络问题。但是从Istio 1.7开始,默认不安装控制面板Kiali等组件,所以需要用户自行单独安装控制面板Kiali及相关的组件。

首先进入到Istio的安装包解压目录下,然后通过以下命令安装:

 
       
  1. [root@chon istio-1.9.0]# kubectl apply -f samples/addons
  2. [root@chon istio-1.9.0]# kubectl apply -f samples/addons/extras

安装时,由于网络原因,可能会报错,重试几次就好了。安装完成后,通过kubectl 命令查询相关pod的运行状态:

 
       
  1. [root@chon istio-1.9.0]# kubectl get pod -n istio-system
  2. NAME READY STATUS RESTARTS AGE
  3. grafana-94f5bf75b-fvlrt 1/1 Running 0 7h14m
  4. istio-egressgateway-5b475b9856-lzwwm 1/1 Running 0 24h
  5. istio-ingressgateway-648778567c-4gddl 1/1 Running 0 24h
  6. istiod-7cccc657f6-ng9r2 1/1 Running 0 24h
  7. jaeger-5c7675974-fmw4n 1/1 Running 0 7h14m
  8. kiali-d4fdb9cdb-wdj2v 1/1 Running 0 7h14m
  9. prometheus-7d76687994-p6whv 2/2 Running 0 7h14m
  10. zipkin-679599ffd8-xxb8l 1/1 Running 0 7h1m

2.2.2 配置Kiali控制面板对外访问

查看kiali服务,发现其类型为ClusterIP,没有对外暴露端口,无法从外部访问:

 
       
  1. [root@chon istio-1.9.0]# kubectl get service kiali -n istio-system
  2. NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
  3. kiali ClusterIP 10.105.136.82 <none> 20001:/TCP,9090/TCP

所以此时需要通过NodePort的方式对外暴露控制面板,我们将原来的ClusterIP类型的service导出yaml文件,通过删除注解、创建信息、状态字段及ClusterIP等信息将类型改NodePort,然后使用kubectl apply -f 创建:

 
       
  1. [root@chon istio-1.9.0]# kubectl get svc -n istio-system kiali -o yaml > kiali-nodeport.yaml
  2. [root@chon istio-1.9.0]# vi kiali-nodeport.yaml
  3. #主要删除metadata下的annotation, resourceVersion,seflFlink, uid; 以及spec下的ClusterIP,修改类型为NodePort, 同时删除status状态字段即可。
  4. [root@chon istio-1.9.0]# kubectl apply -f kiali-nodeport.yaml

此时再查看kiali的service,可以看到已经可以端口已经暴露出来:

 
       
  1. [root@chon istio-1.9.0]# kubectl get service kiali -n istio-system
  2. NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
  3. kiali NodePort 10.105.136.82 <none> 20001:32662/TCP,9090:31692/TCP 7h44m

然后在浏览器中输入“http://<ip address>:32662/kiali”打开Kiali的登录页面,登录成功后,Kiali的总览视图如下所示:

2021021922323267.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

2.3 实验项目部署

2.3.1 项目简介

下面通过经典的 Weather Forecast 进行部署实践,它是一款查询城市天气信息的应用实例,一共包含4个微服务,它们之间的调用关系如下:

20210219223559314.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

  • frontend:前台服务,会调用 advertisement 和 forecast 这两个服务,展示整个应用的页面;
  • advertisement:广告服务,返回的静态的广告图片;
  • forecast:添加预报服务,返回相应城市的天气数据;
  • recommendation:推荐服务,根据天气情况向用户推荐穿衣和运行等信息。
    其中,frontend 服务的有两个版本:
  • v1 版本的界面按钮为绿色。
  • v2 版本的界面按钮为蓝色。
    forecast 服务有两个版本:
  • v1 版本会直接返回天气信息;
  • v2 版本会请求 recommendation 服务,获取推荐信息,并结合天气信息一起返回数据。

2.3.2 Weather Forecast 部署

Step1: 下载项目源码。由于官方代码的 Kubernetes api 版本未及时更新肯能会导致报错问题,所以这里不建议使用官,本文提供一个较新的源码:

 
       
  1. $ git clone https://github.com/slzcc/cloud-native-istio.git

Step2: 添加 v1 版本的服务

 
       
  1. $ kubectl create ns weather
  2. $ kubectl label namespace weather istio-injection=enabled
  3. $ kubectl apply -f install/weather-v1.yaml -n weather

等待服务安装成功:

20210219223908427.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

Step3: 添加网关资源 Gateway。

 
       
  1. $ kubectl apply -f install/weather-gateway.yaml

Step4: 验证访问页面。添加网关资源 Gateway 创建完成后访问 istio-ingressgateway 地址即可访问,或者访问其 NodePort 端口:

 
       
  1. [root@chon ~]# kubectl get svc -n istio-system istio-ingressgateway
  2. NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
  3. istio-ingressgateway LoadBalancer 10.102.172.210 <pending> 15021:32492/TCP,80:31844/TCP,443:32460/TCP,31400:30568/TCP,15443:31743/TCP 25h

20210219224126222.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

点击查询:

watermark_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

至此,初始实验环境就全部搭建部署完成,接下来就正式开启Istio灰度发布功能的体验之旅。

三、实验过程

实验中有两个核心配置文件贯穿始终,有必要先提前认识和区分一下:

  • VirtualService:路由规则配置(虚拟服务),定义路由规则,可以将满足条件的流量都转发到对应的服务后端;
  • DestinationRule:目标规则配置,定义发生路由后应用于服务流量的策略,描述到达目标的请求怎么处理。
    目标规则是配合虚拟服务来使用的,主要用来定义子集,子集实际上就是具体的目标地址,除此以外,它主要描述的是到达目标请求后如何去处理,所谓的目标就是子集,而如何处理就是指具体的策略。

3.1 初始状态部署

在开始实验前,首先对每个服务都创建各自的 VirtualService 和 DestinationRule 资源,将访问请求路由到所有服务的 v1 版本:

 
       
  1. $ kubectl apply -f install/destination-rule-v1.yaml -n weather
  2. $ kubectl apply -f install/virtual-service-v1.yaml -n weather

查看配置的路由规则,以 forecast 服务为例:

 
       
  1. [root@chon ~]# kubectl get vs -n weather forecast-route -o yaml
  2. apiVersion: networking.istio.io/v1beta1
  3. kind: VirtualService
  4. ...
  5. name: forecast-route
  6. namespace: weather
  7. ...
  8. spec:
  9. hosts:
  10. - forecast
  11. http:
  12. - route:
  13. - destination:
  14. host: forecast
  15. subset: v1

在浏览器中多次加载前台页面,并查询城市的天气信息,确认显示正常。然后打开Kiali控制台,查看各个服务之间的调用关系,如下图所示:

20210219224638558.jpg_x-oss-process_image_type_ZmFuZ3poZW5naGVpdGk_shadow_10_text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTc2MjE3Mw_size_16_color_FFFFFF_t_70_pic_center

3.2 基于流量比例的路由

场景一:用户需要软件能够根据不同的天气情况推荐合适的穿衣和运动信息。于是开发的同学增加了 recommendation 新服务,并升级 forecast 服务到 v2 版本来调用 recommendation 服务。在新特性上线时,运维的同学首先部署 forecast 服务的 v2 版本和 recommendation 服务,并对 forecast 服务的 v2 版本进行灰度发布。

Step1: 部署 recommendation 服务和 forecast 服务的 v2 版本。

 
       
  1. [root@chon cloud-native-istio]# kubectl apply -f install/recommendation-service/recommendation-all.yaml -f install/forecast-service/forecast-v2-deployment.yaml -n weather

查看服务状态:

在这里插入图片描述

Step2: 更新 forecast 服务 v2 版本的 DestinationRule。

 
       
  1. [root@chon cloud-native-istio]# kubectl apply -f install/forecast-service/forecast-v2-destination.yaml -n weather

查看下发成功的配置,可以看到增加了 v2 版本 subset 的定义:

 
       
  1. [root@chon cloud-native-istio]# kubectl get dr forecast-dr -o yaml -n weather
  2. ...
  3. host: forecast
  4. subsets:
  5. - labels:
  6. version: v1
  7. name: v1
  8. - labels:
  9. version: v2
  10. name: v2

这时去浏览器中查询天气,显然还不会出现推荐信息,因为所有流量依然都被路由到 forecast 服务的 v1 版本,不会调用 recommendation 服务。

Step3: 配置 forecast 服务的 VirtualService 配置,其中的 weight 字段显示了相应服务的流量占比,可以看到此时为 v1:v2 = 1:1。

在这里插入图片描述

 
       
  1. [root@chon cloud-native-istio]# kubectl apply -f chapter-files/canary-release/vs-forecast-weight-based-50.yaml -n weather

Step4: 在浏览器中查看配置后的效果。多次刷新查询天气页面,可以发现大概约 50% 的情况下不显示推荐服务,表示调用了 forecast 服务的 v1 版本;在另外 50% 的情况下表示推荐服务,调用了 forecast 服务的 v2 版本(刷新页面基本上是两个版本交替着来)。

在这里插入图片描述

在这里插入图片描述

Step5: 继续增加 forecast 服务的 v2 版本的流量比例,直到流量全部被路由到 v2 版本。

在这里插入图片描述

 
       
  1. [root@chon cloud-native-istio]# kubectl apply -f chapter-files/canary-release/vs-forecast-weight-based-v2.yaml -n weather

Step6: 在浏览器中查看配置后的效果。多次刷新页面查询天气,每次都会出现推荐信息,说明访问请求都被路由到了 forecast 服务 v2 版本。

查看Kiali控制台:

在这里插入图片描述

Step7: 保留 forecast 服务的老版本 v1 一段时间,再确认 v2 版本的各性能指标稳定后,删除老版本 v1 的所有资源,完成灰度发布。

3.3 基于请求内容的发布

场景二:在生产环境中同时上线了 forecast 服务的 v1 和 v2 版本,运维同学期望让不同的终端用户访问不同的版本,例如:让使用 Chrome 浏览器的用户看到推荐信息,但让使用其他浏览器的用户看不到推荐信息。

有了上面场景一的经验,依葫芦画瓢,只需要修改 forecast 服务 v2 版本的 DestinationRule中的 match 条件,使来自Chrome浏览器的请求路由到 v2 版本,其余的不变即可:

在这里插入图片描述

在浏览器中查看配置后的效果:用 Chrome 浏览器多次查询天气信息,发现始终显示推荐信息,说明访问到 forecast 服务的 v2 版本;用 360 或 Firefox 浏览器多次查询天气信息,发现始终不显示推荐信息,说明访问到 forecast 服务的 v1 版本。

谷歌浏览器查询访问结果:

在这里插入图片描述

360浏览器查询访问结果:

在这里插入图片描述

现在已经掌握了两种路由规则的配置和应用之后,感兴趣的同学可以自己动手试一试,模拟将两种路由规则组合在一起的场景,比如:在生产环境中同时上线了 frontend 服务的 v1 和 v2 版本(v1 版本的按钮颜色是绿色的,v2 版本的按钮颜色是蓝色的),运维同学期望使用 Android 操作系统的一半用户看到的是 v1 版本,另一半用户看到的是 v2 版本;使用其他操作系统的用户看到的总是 v1 版本。

3.4 多服务同时发布

场景三:运维同学为 frontend 和 forecast 两个服务同时进行灰度发布,frontend 服务新增 v2 版本(界面的按钮为蓝色);forecast 服务新增 v2 版本(增加了推荐信息)。测试人员在用账户 tester 访问天气应用时会看到这两个服务的 v2 版本,其他用户只能看到两个服务的 v1 版本,要求不会出现服务版本交叉调用的情况。

在场景一中我们已经部署过了非入口服务 recommendation 和 forecast 的 v2 版本,并更新了 forecast 服务的 DestinationRule。现在我们在集群中来部署入口服务 frontend 的 v2 版本,并更新其 DestinationRule。

Step1: 部署入口服务 frontend 的 v2 版本。

 
       
  1. [root@chon cloud-native-istio]# vi install/frontend-service/frontend-v2-deployment.yaml
  2. apiVersion: apps/v1
  3. kind: Deployment
  4. metadata:
  5. name: frontend-v2
  6. labels:
  7. app: frontend
  8. version: v2
  9. spec:
  10. replicas: 1
  11. selector:
  12. matchLabels:
  13. app: frontend
  14. template:
  15. metadata:
  16. labels:
  17. app: frontend
  18. version: v2
  19. spec:
  20. containers:
  21. - name: frontend
  22. image: istioweather/frontend:v2
  23. imagePullPolicy: IfNotPresent
  24. ports:
  25. - containerPort: 3000
  26. [root@chon cloud-native-istio]# kubectl apply -f install/frontend-service/frontend-v2-deployment.yaml -n weather

查看部署情况:

在这里插入图片描述

Step2: 更新 frontend 服务的 DestinationRule,增加对 v2 版本 subset 的定义:

 
       
  1. [root@chon cloud-native-istio]# vi frontend-service/frontend-v2-destination.yaml
  2. apiVersion: networking.istio.io/v1alpha3
  3. kind: DestinationRule
  4. metadata:
  5. name: frontend-dr
  6. spec:
  7. host: frontend
  8. subsets:
  9. - name: v1
  10. labels:
  11. version: v1
  12. - name: v2
  13. labels:
  14. version: v2
  15. [root@chon cloud-native-istio]# kubectl apply -f install/frontend-service/frontend-v2-destination.yaml -n weather

Step3: 配置 frontend 服务的基于访问内容的路由规则,将测试账户(Cookie 带有 “user=tester”)信息的请求流量导入到 frontend 服务的 v2 版本的 Pod 实例。

 
       
  1. apiVersion: networking.istio.io/v1alpha3
  2. kind: VirtualService
  3. metadata:
  4. name: frontend-route
  5. spec:
  6. hosts:
  7. - "*"
  8. gateways:
  9. - istio-system/weather-gateway
  10. http:
  11. - match:
  12. - headers:
  13. cookie:
  14. regex: ^(.*?;)?(user=tester)(;.*)?$
  15. route:
  16. - destination:
  17. host: frontend
  18. subset: v2
  19. - route:
  20. - destination:
  21. host: frontend
  22. subset: v1
  23. [root@chon cloud-native-istio]# kubectl apply -f chapter-files/canary-release/vs-frontend-multiservice-release.yaml -n weather

Step4: 配置非入口服务 forecast 的路由规则,使得只有带“version:v2”标签的 Pod 实例的流量,才能进入 forecast 服务的新版本 v2 实例:

 
       
  1. [root@chon canary-release]# vi chapter-files/canary-release/vs-forecast-multiservice-release.yaml
  2. apiVersion: networking.istio.io/v1alpha3
  3. kind: VirtualService
  4. metadata:
  5. name: forecast-route
  6. spec:
  7. hosts:
  8. - forecast
  9. http:
  10. - match:
  11. - sourceLabels:
  12. version: v2
  13. route:
  14. - destination:
  15. host: forecast
  16. subset: v2
  17. - route:
  18. - destination:
  19. host: forecast
  20. subset: v1
  21. [root@chon cloud-native-istio]# kubectl apply -f chapter-files/canary-release/vs-forecast-multiservice-release.yaml -n weather

Step5: 查看配置后的效果。
用 tester 账户登录并访问前台页面,界面的按钮是蓝色的,表示访问到的是 frontend 服务的 v2 版本。在查询天气时会显示推荐信息,表示可以访问到 forecast 服务的 v2 版本:

在这里插入图片描述

不登入或者使用其他用户则访问的是 v1 版本看不到推荐信息:

在这里插入图片描述

可视化视图查看服务间调用关系:

在这里插入图片描述

3.5 自动化部署

前面介绍的灰度发布的策略配置都需要人工干预。在持续交付过程中,为了解决部署和管理的复杂性,往往需要通过自动化工具实现基于权重的灰度发布。

Flagger 是一个基于 Kubernetes 和 Istio 提供灰度发布、监控和告警等功能的开源软件,通过使用 Istio 的流量路由和 Prometheus 指标来分析应用程序的行为,从而实现灰度版本的自动部署,可以使用 Webhook 扩展 Canary 分析,已运行集成测试、压力测试或其他自定义测试。

在这里插入图片描述

其部署流程如上图所示,由于篇幅有限,这里就不再进行赘述,有兴趣的同学可以进一步进行实践体验。

四、总结

作为Istio入门体验系列的第一篇文章,关于灰度发布的实践暂时就先到这里了。对于一名刚接触Istio的小白,通过基于流量比例、基于请求内容以及多服务场景下的灰度发布的实践,Get到了它区别于Kubernetes的部署方式,也切身感受到了Istio在各种规则业务场景下的灵活性。当然,作为系列文章,接下来我也将继续学习探索,持续输出,还望各位同学多多关注,提出宝贵建议!

[

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/906653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MyBatis的基本入门及Idea搭建MyBatis坏境且如何实现简单的增删改查(CRUD)---详细介绍

一&#xff0c;MaBatis是什么&#xff1f; 首先是一个开源的Java持久化框架&#xff0c;它可以帮助开发人员简化数据库访问的过程并提供了一种将SQL语句与Java代码进行解耦的方式&#xff0c;使得开发人员可以更加灵活地进行数据库操作。 1.1 Mabatis 受欢迎的点 MyBatis不仅是…

玄而又玄——我亲历的三大总线

总线是计算机系统中的桥梁和公路。对于要学习计算机系统的人来说&#xff0c;如果不理解总线&#xff0c;那么很多认知就没办法落到实处&#xff0c;想不清两样东西是如何连接起来&#xff0c;数据是如何从一点到另一点的。 最近两三年&#xff0c;做了比较多的底层开发&#x…

Scratch 之 创作小技巧 -- 让触碰效果更丝滑

今天小技巧的主题是——丝滑 a.让触碰效果更丝滑 ——非线性放大 相信大家&#xff0c;做游戏时都会有一开始按键吧&#xff0c;把鼠标放上去&#xff0c;这个按键就会有相应的变化&#xff0c;如放大&#xff0c;作为初学者&#xff0c;这段的代码可能是这样↓ 虽然看起来挺…

解析大规模开发:提升企业级开发效率与质量,加速创新

在数字化转型的大环境下&#xff0c;越来越多的企业依赖软件来驱动业务和创新。然而&#xff0c;随着开发规模日益庞大&#xff0c;如何更好地提升研发效能&#xff0c;从而塑造更强大的竞争力&#xff0c;已然成为众多企业亟待解决的共同难题。 作为国内领先的DevSecOps提供商…

凉而不冷 柔而不弱 三菱重工海尔舒适风科技助您整夜安眠

古人云&#xff1a;安寝乃人生乐事。可随着夏天的到来&#xff0c;昼长夜短&#xff0c;家里的老人、儿童、父母都存在不同的入睡苦恼。对于儿童来说&#xff0c;空调温度调的太低容易踢被子着凉&#xff0c;温度调的高又怕孩子满头大汗&#xff1b;父母自身也会因为半夜帮孩子…

盛元广通高校实验室开放预约与综合管理系统LIMS

系统概述&#xff1a; 高校实验室涉及到的课程、老师、学生多&#xff0c;管理起来费时费力&#xff0c;盛元广通高校实验室开放预约与综合管理系统LIMS提供简单易用的账号管理、实验室管理、课程管理、实验项目管理、实验时间设定&#xff1b;为学生提供简单易用的自主实验选…

使用 NBAR(基于网络的应用程序识别) 进行应用流量分析

识别和分类网络应用程序是有效管理网络带宽的关键。通过对网络流量进行分类&#xff0c;管理员可以根据企业的需要可视化、组织和确定网络流量的优先级。通过识别和分类网络流量&#xff0c;网络管理员可以有效地应用 QoS 策略&#xff0c;从而实现优化的网络带宽性能。 什么是…

docker 安装oracle19c linux命令执行sql

docker安装oracle # 下载镜像 19.3.0.0.0 docker pull registry.cn-hangzhou.aliyuncs.com/laowu/oracle:19c # 创建文件 mkdir -p /home/mymount/oracle19c/oradata # 授权&#xff0c;不授权会导致后面安装失败 chmod 777 /home/mymount/oracle19c/oradatadocker run -d \ …

0基础学习VR全景平台篇 第88篇:智慧眼-成员管理

一、功能说明 成员管理&#xff0c;是指管理智慧眼项目的成员&#xff0c;拥有相关权限的人可以进行添加成员、分配成员角色、设置成员分类、修改成员以及删除成员五项操作。但是仅限于管理自己的下级成员&#xff0c;上级成员无权管理。 二、前台操作页面 登录智慧眼后台操…

JS中如何区分变量是数组还是对象

总结&#xff1a; 这里提供三种方法&#xff1a; var arr[] var arr2{}1、constructor:数组的constructor是function Array(){};对象的constructor是function Object(){}2、instanceof&#xff1a;数组 instanceof Array&#xff1a;为true;对象 instanceof Array: 为false;3、…

ICASSP 2023说话人识别方向论文合集

今年入选 ICASSP 2023 的论文中&#xff0c;说话人识别&#xff08;声纹识别&#xff09;方向约有64篇&#xff0c;初步划分为Speaker Verification&#xff08;31篇&#xff09;、Speaker Recognition&#xff08;9篇&#xff09;、Speaker Diarization&#xff08;17篇&#…

GuLi商城-前端基础Vue指令-单向绑定双向绑定

什么是指令? 指令 (Directives) 是带有 v- 前缀的特殊特性。 指令特性的预期值是:单个 JavaScript 表达式。 指令的职责是&#xff0c;当表达式的值改变时&#xff0c;将其产生的连带影响&#xff0c;响应式地作用于DOM 例如我们在入门案例中的 v-on&#xff0c;代表绑定事…

IO多路复用(poll:与select类似,当监测的文件描述符有一个或多个就绪时,执行对应的IO操作

使用poll实现TCP循环服务器接收客户端消息并打印 服务器 客户端 写一个makefile方便使用 结果 笔记

611. 有效三角形的个数

611. 有效三角形的个数 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a; 原题链接&#xff1a; 611. 有效三角形的个数 https://leetcode.cn/problems/valid-triangle-number/description/ 完成情况&#xff1a; 解题思路&#xff1a; …

第一篇:编写 Hello World 程序

编写 Hello World 程序 Hello World 程序就是让应用程序显示 Hello World 字符串。这是最简单的应用&#xff0c;但却包含了一个应用程序的基本要素&#xff0c;所以一般使用它来演示程序的创建过程。本章要讲的就是在Qt Creator 中创建一个图形用户界面的项目&#xff0c;从而…

什么是数字化?什么是数字化转型?为什么企业选择数字化转型?

数字化&#xff1a; 数字化是指将模拟信息或物理对象转换为数字格式的过程。这涉及将数据、文档、图像、视频和其他形式的信息转换为可以以电子方式处理、存储和传输的二进制代码。与传统的模拟方法相比&#xff0c;数字化可以更有效地存储、检索和操作数据。 数字化转型&…

3D医学教学虚拟仿真系统:身临其境感受人体结构和功能

3D医学教学虚拟仿真系统是一种基于虚拟现实技术的教学工具&#xff0c;它可以帮助学生更好地理解和掌握医学知识。这种课件通常包括人体解剖学、生理学、病理学等方面的教学内容&#xff0c;通过三维立体的图像和动画展示&#xff0c;让学生更加直观地了解人体结构和功能。 与传…

.IFC文件如何打开【在线工具】

IFC文件是以工业基础类&#xff08;IFC&#xff09;格式创建的模型文件&#xff0c;这是建筑信息模型&#xff08;BIM&#xff09;程序使用的开放文件格式。它包含建筑物或设施模型&#xff0c;包括空间元素、材料和形状。 IFC&#xff08;工业基础类&#xff09;数据格式是建…

长胜证券:市场持续震荡 低位布局时机或已来临

业内人士表明&#xff0c;出资者心情的动摇起伏会大于商场价格&#xff0c;同时出资者心情的最高点和最低点往往滞后于商场价格的最高点和最低点&#xff0c;所以当商场动摇较大时&#xff0c;从心情动身去做决策往往不可能收到很好的出资效果。而当咱们以长期的心态参加出资&a…

学习开发振弦采集模块的注意事项

学习开发振弦采集模块的注意事项 &#xff08;三河凡科科技/飞讯教学&#xff09;振弦采集模块是一种用来实时采集和处理振弦信号的电子设备&#xff0c;在工业、航空、医疗等领域都有广泛应用。学习开发振弦采集模块需要注意以下几点&#xff1a; 一、硬件选择 首先需要选择…