- tensor 的四则运算
- broadcast
import torch
import numpy as np
# 张量tensor 随机初始化
x = torch.rand(4,3)
print(x)
y =torch.randn(4,3)
print(y)
# 初始化全零 张量
a = torch.zeros((4,4),dtype=torch.long)
print(a)
#初始化全一 张量
b = torch.ones(4,4)
print(b)
c = torch.tensor(np.ones((2,3),dtype='int32'))
print(c)
常见的构造Tensor的方法:
# tensor 的基本操作
# 加法
print(a+b)
# add_ = replace in 操作
y = a.add_(3)
print(y)
out:
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor([[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]])
#索引操作
x = torch.rand(3,4)
print(x)
# 第二列
print(x[:,1])
# 第二行
print(x[1,:])
#维度变换 张量的维度变换常见的方法有torch.view()和torch.reshape()
x = torch.randn(4,3)
y = x.view(12)
z = x.view(-1,6)
print(x.size(),y.size(),z.size())
print(x)
print(z)
# 最后x tensor size 没有发生改变
#view()仅仅是改变了对这个张量的观察角度
print(x)
#我们希望原始张量和变换后的张量互相不影响。
#为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(),
#同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用
a = torch.randn(4,4)
b = a.reshape(2,8)
print(a)
print(b)
#广播机制
#当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。
x = torch.arange(1,4).view(1,3)
print(x)
y = torch.arange(1,5).view(4,1)
print(y)
print(x+y)