MySQL运行时的可观测性

news2024/11/18 7:31:45
  • 1.说在前面的话

  • 2.安装employees测试库

  • 3.观测SQL运行状态

    • 3.1 观测SQL运行时的内存消耗
    • 3.2 观测SQL运行时的其他开销
    • 3.3 观测SQL运行进度

感知SQL运行时的状态

1. 说在前面的话

在MySQL里,一条SQL运行时产生多少磁盘I/O,占用多少内存,是否有创建临时表,这些指标如果都能观测到,有助于更快发现SQL瓶颈,扑灭潜在隐患。

从MySQL 5.7版本开始,performance_schema就默认启用了,并且还增加了sys schema,到了8.0版本又进一步得到增强提升,在SQL运行时就能观察到很多有用的信息,实现一定程度的可观测性。

下面举例说明如何进行观测,以及主要观测哪些指标。

2. 安装employees测试库

安装MySQL官方提供的employees测试数据库,戳此链接(https://dev.mysql.com/doc/index-other.html)下载,解压缩后开始安装:

$ mysql -f < employees.sql;

INFO
CREATING DATABASE STRUCTURE
INFO
storage engine: InnoDB
INFO
LOADING departments
INFO
LOADING employees
INFO
LOADING dept_emp
INFO
LOADING dept_manager
INFO
LOADING titles
INFO
LOADING salaries
data_load_time_diff
00:00:37

MySQL还提供了相应的使用文档:https://dev.mysql.com/doc/employee/en/

本次测试采用GreatSQL 8.0.32-24版本,且运行在MGR环境中:

greatsql> \s
...
Server version:         8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c
...

greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members;
+--------------------------------------+-------------+----------------+
| MEMBER_ID                            | MEMBER_ROLE | MEMBER_VERSION |
+--------------------------------------+-------------+----------------+
| 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY   | 8.0.32         |
| 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR  | 8.0.32         |
| 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY     | 8.0.32         |
+--------------------------------------+-------------+----------------+

3. 观测SQL运行状态

查看当前连接/会话的连接ID、内部线程ID:

greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id();
+----------------+-----------+
| processlist_id | thread_id |
+----------------+-----------+
|            110 |       207 |
+----------------+-----------+

查询得到当前的连接ID=110,内部线程ID=207。

P.S,由于本文整理过程不是连续的,所以下面看到的 thread_id 值可能会有好几个,每次都不同。

3.1 观测SQL运行时的内存消耗

执行下面的SQL,查询所有员工的薪资总额,按员工号分组,并按薪资总额倒序,取前10条记录:

greatsql> explain select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: salaries
   partitions: NULL
         type: index
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 7
          ref: NULL
         rows: 2838426
     filtered: 100.00
        Extra: Using temporary; Using filesort

看到需要全索引扫描(其实也等同于全表扫描,因为是基于PRIMARY索引),并且还需要生成临时表,以及额外的filesort。

在正式运行该SQL之前,在另外的窗口中新建一个连接会话,执行下面的SQL先观察该连接/会话当前的内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 9
 current_allocated: 26266
 current_avg_alloc: 2918.4444
 current_max_alloc: 16464
   total_allocated: 30311

等到该SQL执行完了,再一次查询内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 13
 current_allocated: 24430
 current_avg_alloc: 1879.2308
 current_max_alloc: 16456
   total_allocated: 95719

我们注意到几个数据的变化情况,用下面表格来展示:

指标运行前运行后
total_allocated3031195719

也就是说,SQL运行时,需要分配的内存是:95719 - 30311 = 65408 字节。

3.2 观测SQL运行时的其他开销

通过观察 performance_schema.status_by_thread 表,可以知道相应连接/会话中SQL运行的一些状态指标。在SQL运行结束后,执行下面的SQL命令即可查看:

greatsql> select * from performance_schema.status_by_thread where thread_id = 207;
...
|       207 | Created_tmp_disk_tables             | 0                        |
|       207 | Created_tmp_tables                  | 0                        |
...
|       207 | Handler_read_first                  | 1                        |
|       207 | Handler_read_key                    | 1                        |
|       207 | Handler_read_last                   | 0                        |
|       207 | Handler_read_next                   | 2844047                  |
|       207 | Handler_read_prev                   | 0                        |
|       207 | Handler_read_rnd                    | 0                        |
|       207 | Handler_read_rnd_next               | 0                        |
|       207 | Handler_rollback                    | 0                        |
|       207 | Handler_savepoint                   | 0                        |
|       207 | Handler_savepoint_rollback          | 0                        |
|       207 | Handler_update                      | 0                        |
|       207 | Handler_write                       | 0                        |
|       207 | Last_query_cost                     | 286802.914893            |
|       207 | Last_query_partial_plans            | 1                        |
...
|       207 | Select_full_join                    | 0                        |
|       207 | Select_full_range_join              | 0                        |
|       207 | Select_range                        | 0                        |
|       207 | Select_range_check                  | 0                        |
|       207 | Select_scan                         | 1                        |
|       207 | Slow_launch_threads                 | 0                        |
|       207 | Slow_queries                        | 1                        |
|       207 | Sort_merge_passes                   | 0                        |
|       207 | Sort_range                          | 0                        |
|       207 | Sort_rows                           | 1                       |
|       207 | Sort_scan                           | 1                        |
...

上面我们只罗列了部分比较重要的状态指标。从这个结果也可以佐证slow query log中的结果,确实没创建临时表。

作为参照,查看这条SQL对应的slow query log记录:

# Query_time: 0.585593  Lock_time: 0.000002 Rows_sent: 10  Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0
# Tmp_tables: 0  Tmp_disk_tables: 0  Tmp_table_sizes: 0
# InnoDB_trx_id: 0
# Full_scan: Yes  Full_join: No  Tmp_table: No  Tmp_table_on_disk: No
# Filesort: Yes  Filesort_on_disk: No  Merge_passes: 0
#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000
#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000
#   InnoDB_pages_distinct: 4281
use employees;
SET timestamp=1688609161;
select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;

可以看到,Created_tmp_disk_tables, Created_tmp_tables, Handler_read_next, Select_full_join, Select_scan, Sort_rows, Sort_scan, 等几个指标的数值是一样的。

还可以查看该SQL运行时的I/O latency情况,SQL运行前后两次查询对比:

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     7 | 75.39 us      | 5.84 us     | 10.77 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

...

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     8 | 85.29 us      | 5.84 us     | 10.66 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

可以看到这个SQL运行时的I/O latency是:85.29 - 75.39 = 9.9us。

3.3 观测SQL运行进度

我们知道,运行完一条SQL后,可以利用PROFLING功能查看它各个阶段的耗时,但是在运行时如果也想查看各阶段耗时该怎么办呢?

从MySQL 5.7版本开始,可以通过 performance_schema.events_stages_% 相关表查看SQL运行过程以及各阶段耗时,需要先修改相关设置:

# 确认是否对所有主机&用户都启用
greatsql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| %    | %    | %    | NO      | NO      |
+------+------+------+---------+---------+

# 修改成对所有主机&用户都启用
greatsql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'YES', HISTORY = 'YES'
 WHERE HOST = '%' AND USER = '%';

# 修改 setup_instruments & setup_consumers 设置
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';

greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%'; 

这就实时可以观测SQL运行过程中的状态了。

在SQL运行过程中,从另外的窗口查看该SQL对应的 EVENT_ID

greatsql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT        FROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5;
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
| EVENT_ID | Duration | SQL_TEXT                                                                                                                      |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
|   149845 |   0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149803 |   0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149782 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149761 |   0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149740 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+

# 再根据 EVENT_ID 值去查询 events_stages_history_long
greatsql> SELECT thread_id ,event_Id, event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration  FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id;
+-----------+----------+------------------------------------------------+----------+
| thread_id | event_Id | Stage                                          | Duration |
+-----------+----------+------------------------------------------------+----------+
|        85 |   149846 | stage/sql/starting                             |   0.0000 |
|        85 |   149847 | stage/sql/Executing hook on transaction begin. |   0.0000 |
|        85 |   149848 | stage/sql/starting                             |   0.0000 |
|        85 |   149849 | stage/sql/checking permissions                 |   0.0000 |
|        85 |   149850 | stage/sql/Opening tables                       |   0.0000 |
|        85 |   149851 | stage/sql/init                                 |   0.0000 |
|        85 |   149852 | stage/sql/System lock                          |   0.0000 |
|        85 |   149854 | stage/sql/optimizing                           |   0.0000 |
|        85 |   149855 | stage/sql/statistics                           |   0.0000 |
|        85 |   149856 | stage/sql/preparing                            |   0.0000 |
|        85 |   149857 | stage/sql/Creating tmp table                   |   0.0000 |
|        85 |   149858 | stage/sql/executing                            |   0.6257 |
|        85 |   149859 | stage/sql/end                                  |   0.0000 |
|        85 |   149860 | stage/sql/query end                            |   0.0000 |
|        85 |   149861 | stage/sql/waiting for handler commit           |   0.0000 |
|        85 |   149862 | stage/sql/closing tables                       |   0.0000 |
|        85 |   149863 | stage/sql/freeing items                        |   0.0000 |
|        85 |   149864 | stage/sql/logging slow query                   |   0.0000 |
|        85 |   149865 | stage/sql/cleaning up                          |   0.0000 |
+-----------+----------+------------------------------------------------+----------+

上面就是这条SQL的运行进度展示,以及各个阶段的耗时,和PROFILING的输出一样,当我们了解一条SQL运行所需要经历的各个阶段时,从上面的输出结果中也就能估算出该SQL大概还要多久能跑完,决定是否要提前kill它。

如果想要观察DDL SQL的运行进度,可以参考这篇文章:不用MariaDB/Percona也能查看DDL的进度。

更多的观测指标、维度还有待继续挖掘,以后有机会再写。

另外,也可以利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可观测性指标,相当不错的体验。

延伸阅读

  • Query Profiling Using Performance Schema, https://dev.mysql.com/doc/refman/8.0/en/performance-schema-query-profiling.html
  • 不用MariaDB/Percona也能查看DDL的进度,https://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653931466&idx=1&sn=8c14c7a6449205b61990a567a1be315e&scene=21#wechat_redirect
  • 事件记录 | performance_schema全方位介绍,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653935075&idx=3&sn=85be3a5bbe6be8bacd2a88e22ab95b5c&chksm=bd3b4f898a4cc69fb303f977912f4ee4a399ab96b72b8d994e262b1095edad4c7e2e6f45dc9b&scene=21#wechat_redirect
  • 内存分配统计视图 | 全方位认识 sys 系统库,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653935156&idx=6&sn=3061ca49bdefd61eca1fe9b3c52097a1&chksm=bd3b4c5e8a4cc5480e6c27dc42a68837a113abea4279b4ae492078f263cb65421c99dc39d978&scene=21#wechat_redirect

Enjoy GreatSQL :)

关于 GreatSQL

GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

image

社区有奖建议反馈: https://greatsql.cn/thread-54-1-1.html

社区博客有奖征稿详情: https://greatsql.cn/thread-100-1-1.html

(对文章有疑问或者有独到见解都可以去社区官网提出或分享哦~)

技术交流群:

微信&QQ群:

QQ群:533341697

微信群:添加GreatSQL社区助手(微信号:wanlidbc )好友,待社区助手拉您进群。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/905932.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ctfshow web入门 命令执行RCE篇 web29-web77 与 web118-web124 详细题解 全

Ctfshow 命令执行 web29 pregmatch是正则匹配函数&#xff0c;匹配是否包含flag&#xff0c;if(!preg_match("/flag/i", $c))&#xff0c;/i忽略大小写 可以利用system来间接执行系统命令 flag采用f*绕过&#xff0c;或者mv fl?g.php 1.txt修改文件名&#xff0c…

一文彻底理解时间复杂度和空间复杂度(附实例)

目录 1 PNP&#xff1f;2 时间复杂度2.1 常数阶复杂度2.2 对数阶复杂度2.3 线性阶复杂度2.4 平方阶复杂度2.5 指数阶复杂度2.6 总结 3 空间复杂度 1 PNP&#xff1f; P类问题(Polynomial)指在多项式时间内能求解的问题&#xff1b;NP类问题(Non-Deterministic Polynomial)指在…

数据中心UPS监控,不服不行!

UPS作为关键的电力保障设备&#xff0c;它在电力中断或波动的情况下&#xff0c;为电子设备提供稳定的备用电源&#xff0c;以防止数据丢失、设备损坏或生产中断。 通过远程监控、电池健康检测、负载管理、警报通知等功能&#xff0c;UPS监控确保了系统的高效运行和可靠性。同时…

Windows下安装tomcat无法启动问题汇总和解决

tomcat在初学的时候安装总是出现各种问题&#xff0c;最近重新安装了一次&#xff0c;居然也被一些小问题导致无法启动了&#xff0c;特此写下这篇文章&#xff0c;希望能帮助到大家 导致tomcat启动失败原因 1、未配置tomcat环境变量: CATALINA_HOME&#xff1b;然后path环境…

扭矩张力控制和速度张力控制详细介绍

张力控制的开环和闭环相关算法介绍,请查看下面文章链接: PLC张力控制(开环闭环算法分析)_张力控制plc程序实例_RXXW_Dor的博客-CSDN博客里工业控制张力控制无处不在,也衍生出很多张力控制专用控制器,磁粉制动器等,本篇博客主要讨论PLC的张力控制相关应用和算法,关于绕…

LeetCode(力扣)404. 左叶子之和Python

LeetCode404. 左叶子之和 题目链接代码 题目链接 左叶子之和 代码 递归 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right …

【JavaEE进阶】SpringMVC

文章目录 一. 简单认识SpringMVC1. 什么是SpringMVC?2. SpringMVC与MVC的关系 二. SpringMVC1. SpringMVC创建和连接2. SpringMVC的简单使用2.1 RequestMapping 注解介绍2.2 RequestMapping支持的请求类型2.3 GetMapping 和 PostMapping 3. 获取参数3.1 传递单个参数3.2 传递对…

2023年跑步耳机性价比最高的都在这里了!不容错过

你还在为如何选择合适的跑步耳机而困扰吗&#xff1f;身为一个常年的跑步的我&#xff0c;在选择运动耳机的时候我会从价格、性能、舒适度、耐用性等多个方面去进行了比较&#xff0c;这样才能够找到最适合自己的跑步耳机。那么下面我就给大家推荐几款具有性价比的跑步耳机&…

项目管理工具,让项目团队更高效

随着项目管理的发展&#xff0c;出现个各种各样的项目管理工具&#xff0c;帮助项目团队提高项目管理的效率和质量&#xff0c;降低成本和风险&#xff0c;增强团队的协作和沟通效率&#xff0c;实现项目的成功实施和持续发展。 1、项目计划是项目管理中重要的一环 在传统的…

4.react useContext使用与常见问题

1. 在函数组件实现跨组件通信的方式 2. 注册Context将value传递给子组件let MyContext React.createContext(默认值); <MyContext.Provider value{} > let value useContext(MyContext)<!DOCTYPE html> <html lang"en"><head><meta cha…

【正点原子STM32连载】第十五章 窗口看门狗实验 摘自【正点原子】APM32F407最小系统板使用指南

1&#xff09;实验平台&#xff1a;正点原子stm32f103战舰开发板V4 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id609294757420 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html# 第十…

认识Mybatis并实现增删查改

目录 一.Mybatis特性 二.常见持久层技术的比较 三.搭建Mybaits环境 四.使用Mybatis 五.通过Mybatis实现增删改 六.实现数据库的查询操作 一.Mybatis特性 定制化SQL&#xff1a;MyBatis允许开发人员编写、优化和管理自定义的SQL语句&#xff0c;可以满足复杂查询和存储过程等…

Vitepress

Vitepress 版本&#xff1a;1.0.0-rc.1 这里使用在Vue3组件库中作为项目文档说明使用&#xff0c;另外版本见差异有点大&#xff0c;如版本不一致请参照官方文档 1、安装&初始化 1.1、安装 yarn add vitepress1.0.0-rc.11.2、初始化 PS D:\WebstromProject\chenxing>…

CloudQuery实战 | 谁说没有一款一体化数据库操作管控云平台了?

文章目录 CloudQuery询盾的地址CloudQuery主页统一入口数据库归纳SQL编辑器权限管控审计中心数据保护数据变更 CloudQuery文档中心了解CloudQuery快速入门安装步骤社区版v2.1.0操作手册1数据查询更新日志 CloudQuery社区和活动 CloudQuery线上实战线上实战主页面展示及数据操作…

CAD哪个版本最好用?学习一下CAD版本转换方法

CAD即计算机辅助设计&#xff0c;是一个制图软件&#xff0c;用于绘制建筑、机械、电子等领域的图纸。CAD文件通常被称为“图纸”或“工程图”。 CAD文件通常在以下方面使用&#xff1a; 1. 建筑&#xff1a;建筑师使用CAD文件来创建建筑物的平面图、立体图和剖面图。 2. 机…

Docker部署LNMP

Docker部署LNMP 一、安装docker1.安装docker2.镜像下载 二、部署MySQL1.获取镜像2.创建启动容器创建启动容器 huahua_mysql 三、部署PHP1.获取镜像2.创建容器3.查看信息 四、安装nginx1.获取镜像2.创建运行容器3.修改nginx配置文件 五、总结1. 安装Docker和Docker Compose&…

IO模型(阻塞IO、非阻塞IO、IO多路复用)

1.阻塞IO&#xff1a;最常用&#xff0c;最简单&#xff0c;效率最低 2.非阻塞 IO--->fcntl&#xff1a;获取或设置fd所指定的文件描述符的属性 箭头地方二选一 3.IO多路复用&#xff1a;允许同时对多个IO进行控制 select&#xff1a;内核同时检测多个IO&#xff0c;一…

金额千位符自定义指令

自定义指令文件 moneyFormat.js /*** v-money 金额千分位转换*/export default {inserted: inputFormatter({// 格式化函数formatter(num, util) {if(num null || num || num undefined || typeof(num) undefined){return }if(util 万元 || util 万){return formatMone…

SHELL 基础 显示字符颜色, 修改历史命令,Linux里的命令 执行顺序

echo 打印命令 &#xff1a; 显示字符串 &#xff1a; [rootserver ~]# echo this is SHELL language this is SHELL language [rootserver ~]# echo this is SHELL language this is SHELL language [rootserver ~]# echo "this is SHELL language" this is SH…

vue 使用nvm控制node 版本,随意切换 node 版本

1.nvm 下载安装 https://github.com/coreybutler/nvm-windows/releases 找自己版本 1.安装版本 nvm list available // 查看所有node 版本 nvm install 版本号 // 安装指定版本号2.nvm 列表展示 nvm list //展示所有版本号3.nvm 切换环境 nvm use 版本号 // 切换版本4.…