毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar

news2025/1/15 16:36:07

原始笔记链接:https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486680&idx=1&sn=edf41d4f95395d7294bc958ea68d3a68&chksm=cf51be21f826373790bc6d79bcea6eb2cb3d09bb1860bba0af0fd5e60c448ca006976503e460#rd
↑ \uparrow 点击上述链接即可阅读全文

IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar

毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar

在这里插入图片描述

Abstract

  • 背景

    • mmWave radars suffer from low angular resolution due to small apertures and conventional signal processing
    • 稀疏阵列雷达 can increase aperture size while minimizing power consumption and readout bandwidth
  • 方法 :提出 Compressive Implicit Radar (CoIR)

    • 目标: high accuracy sparse radar imaging using a single radar chip

    • Leverages : CNN decoder and compressed sensing

    • 贡献:

      设计稀疏线阵: with 5.5x fewer antennas than conventional MIMO arrays

      提出ComDecoder :a fully convolutional implicit neural network architecture

      证明了CoIR的有效性 :in both simulation and real-world experiments,且 不需要 auxiliary sensors

  • 实验结果

    • improved performance over standard mmWave radars and other untrained methods on simulated and real data
    • System does not require training data or auxiliary sensors
      在这里插入图片描述

1 INTRODUCTION

基于光学的Depth imaging及其缺点

  • Depth imaging
    • crucial for applications like SLAM, autonomous driving, security monitoring
  • Typical sensors: cameras, LiDAR
    • Cameras: high-resolution near-field depth imaging
    • LiDAR: directly outputs dense point cloud with high range/angular resolution
  • Limitation : degraded performance in visually degraded environments like fog, smoke

毫米波雷达成像的优点和挑战

  • 优点
    • penetrate through fog/smoke without performance degradation
  • 挑战
    • low angular resolution δ ≈ λ / d \delta ≈ \lambda/d δλ/d
    • Increasing d d d increases cost, power consumption and readout bandwidth

已有提高角分辨率的工作和缺陷

  • 已有思路
    • Large physical arrays
    • MIMO arrays
    • SAR
    • Sensor fusion
    • Optimization with handcrafted priors
    • Deep learning
  • 不足
    • Slow acquisition
    • Increased hardware complexity
    • Require large datasets
    • Limited generalizability

The proposed CoIR:

  • Key observation:

    • INR provides inductive bias towards natural solutions for imaging inverse problems
  • 方法

    • Leverages implicit neural representations (INRs) + compressed sensing
  • 贡献

    • Designed sparse linear array with 5.5x fewer antennas
    • Proposed convolutional decoder architecture ComDecoder
    • Demonstrated improved performance over standard mmWave radars and competitive untrained methods

2 RELATED WORK

2.1 mmWave Imaging Systems

  • 提高角度分辨率的方法及其缺点

    • Large physical arrays: expensive, large data volumes
    • MIMO arrays: requires many radar chips to synthesize large aperture
    • SAR techniques:slow imaging, bulky scanners
    • Sensor fusion: fails if one modality fails
    • Deep learning: requires large labeled datasets, limited generalizability
  • proposed CoIR 的不同:

    • 仅使用 single chip sparse MIMO array

    • 使用 未经训练 的 神经网络

      ✅ 无需训练数据

2.2 Sparse Radar Imaging

  • 稀疏雷达成像技术:

    • 1 Sparse aperture array designs
    • 2 Sparse reconstruction methods
  • 1 Sparse aperture array designs

    • 使用欠奈奎斯特采样 减少 天线数

    • 优化方法:

      ✅ Convex relaxations

      ✅ Prior knowledge of number of reflectors

  • 2 Sparse reconstruction methods

    • Super-resolution algorithms

      ✅ MUSIC, ESPRIT

      ✅ Require incoherent signals, known number of targets

    • Compressed sensing (CS) optimization:

      ✅ 使用稀疏先验,如 spatial sparsity, TV norm

      ✅ Challenging to design priors, scene dependent

  • proposed CoIR 的不同:

    • Sparse array design

      🚩 inspired by prior work but modified due to hardware constraints

    • Uses untrained neural network

      🚩 as complex prior instead of handcrafted prior

      ✅ Neural network prior shows affinity for natural features and noise robustness

2.3 Implicit Neural Representations

  • 两类INR architectures:

    • 1 Convolutional methods
    • 2 Coordinate-based MLP methods
  • 1 Convolutional methods ,适合:

    • Compressed sensing
    • Image super-resolution
    • Image denoising
    • Accelerated MRI
  • 2 Coordinate-based MLP methods ,适合:

    • Novel view synthesis
    • Dynamic illumination
    • PDE solutions
    • Image deconvolution
  • CoIR中的ComDecoder:

    • 属于 Convolutional methods

    • tailored for sparse radar imaging

    • Key properties:

      🚩 Convolutional operations capture local spatial information

      🚩 Upsampling induces notion of resolution per layer

      🚩 Residual blocks smooth optimization and propagate information between layers

      🚩 Together these inductive biases improve performance on sparse radar imaging

    • Differences from prior works:

      ✅ CoIR uses untrained INR as complex prior for sparse radar imaging

      ✅ Prior works use INR for natural images or other imaging modalities

3 RADAR IMAGING BACKGROUND

  • 发射信号模型

    • y t x ( t ) = e j 2 π ( f 0 t + 1 2 B τ t 2 ) , 0 ≤ t ≤ T y_{tx}(t) = e^{j2π(f_0t + \frac{1}{2}Bτt^2)}, 0 \leq t \leq T ytx(t)=ej2π(f0t+21Bτt2),0tT
    • f 0 f_0 f0: carrier frequency
    • B B B: chirp bandwidth
    • T T T: pulse duration
  • 场景模型 (离散反射体分布)

    • x ‾ [ n r , n θ ] ∈ C K × L \overline{x}[n_r, n_\theta] \in \mathbb{C}^{K\times L} x[nr,nθ]CK×L
    • n r n_r nr: range bin index
    • n θ n_\theta nθ: angle bin index
  • 回波信号模型

    • z [ n , m ] = ∑ n r = 0 K − 1 ∑ n θ = 0 L − 1 x ‾ [ n r , n θ ] e j 2 π ψ θ ( n θ ) m e j 2 π ψ r ( n r ) n + w [ n , m ] z[n,m] = \sum_{n_r=0}^{K-1} \sum_{n_\theta=0}^{L-1} \overline{x}[n_r, n_\theta] e^{j2π\psi_\theta(n_\theta)m} e^{j2π\psi_r(n_r)n} + w[n,m] z[n,m]=nr=0K1nθ=0L1x[nr,nθ]ej2πψθ(nθ)mej2πψr(nr)n+w[n,m]
    • ψ θ ( n θ ) = f 0 d c sin ⁡ ( b θ [ n θ ] ) \psi_\theta(n_\theta) = \frac{f_0 d}{c}\sin(b_\theta[n_\theta]) ψθ(nθ)=cf0dsin(bθ[nθ]): spatial frequency
    • ψ r ( n r ) = B N 2 b r [ n r ] c \psi_r(n_r) = \frac{B}{N}\frac{2b_r[n_r]}{c} ψr(nr)=NBc2br[nr]: normalized temporal frequency
    • w [ n , m ] w[n,m] w[n,m]: noise
  • Compact matrix form

    • z = F ( x ‾ ) + w z = F(\overline{x}) + w z=F(x)+w

    • F F F: 2D FFT

    • Goal: recover x ‾ \overline{x} x from under-sampled measurements z z z

4 PROPOSED METHOD

  • 目标 :

    • Recover scene reflectivity x ‾ \overline{x} x from under-sampled measurements z z z
  • Measurements :

    • z = M ⊙ F ( x ‾ ) + w z = M\odot F(\overline{x}) + w z=MF(x)+w

    • M M M: binary mask implementing under-sampling

    • w w w: noise

  • 困难 :

    • under-sampling causes grating lobes in sparse array PSF leading to aliasing in image
  • 解决方法

    • Optimize weights of untrained deep CNN G ( C ; p ) G(C;p) G(C;p) to solve inverse problem

      G G G: untrained CNN,

      C C C: fixed noise input,

      p p p: CNN parameters

    • Optimization objective:

      🚩 p ^ = arg min ⁡ p ∣ ∣ z − M ⊙ F ( G ( C ; p ) ) ∣ ∣ 2 + λ L ∣ ∣ G ( C ; p ) ∣ ∣ 1 \hat{p} = \argmin_p ||z - M\odot F(G(C;p))||_2 + \lambda_L||G(C;p)||_1 p^=argminp∣∣zMF(G(C;p))2+λL∣∣G(C;p)1

      🚩 λ L \lambda_L λL: sparsity regularization strength

    • Key observation:

      🚩 INR provides inductive bias towards natural solutions for imaging inverse problems

  • 优点 :

    • CNN architecture has high impedance to noise

    • Learned solution balances fitting salient features and suppressing artifacts

4.1 Sparse Aperture Design

  • 目标
    • Design a sparse MIMO virtual array that improves imaging accuracy when used with ComDecoder
  • 设计准测 (metrics)
    • PSF main lobe half-power beamwidth (HPBW)
    • Peak sidelobe level (SLL)
    • Presence of grating lobes
  • 硬件约束
    • Max aperture 86λ/2
    • Limited to 4 TX and 4 RX due to commercial single radar chip
  • 设计方法
    • Select 4-element minimum redundancy array for RX to avoid grating lobes
    • Grid search over TX positions to minimize SLL
  • 比较对象(baselines)
    • Full: Ideal full Nyquist sampled array
    • Sub-apt: Largest Nyquist sampled MIMO array given constraints
    • Sub-samp: Largest sub-Nyquist array given constraints
  • 设计结果
    • RX: [0, 1, 4, 6] λ/2
    • TX: [0, 46, 59, 79] λ/2
    • Gives 5.5x fewer antennas than conventional MIMO array

在这里插入图片描述

  • 优点 :
    • Avoids grating lobes
    • Minimizes HPBW
    • Minimizes SLL
    • Satisfies hardware constraints

4.2 Neural Network Architecture

提出 ComDecoder:convolutional decoder architecture

  • ComDecoder :

    • Maps latent variables C to image G(C;p)
    • 优化:Parameters p optimized to reconstruct image
  • 网络结构 :

    • Series of upsampling and residual convolution blocks
    • Use SiLU activation instead of ReLU
    • No upsampling in last layer, uses 1x1 conv instead
  • 超参数 :

    • 6 layers (including last layer)
    • 128 channels per layer
    • Fixed input C sampled from uniform distribution
  • 优化过程 :

    • Update network weights p using backpropagation and Adam
    • Takes <50 s per 256x256 image using 2000 iterations
  • 优点 :

    • SiLU increased expressivity over ReLU
    • Upsampling reinforces multi-resolution nature
    • Residual blocks enable information flow between layers
    • Inductive biases improve performance on sparse radar imaging

5 COMPETING UNTRAINED METHODS

7个baselines: Compared CoIR against several untrained methods

  • 1 Delay-and-Sum (DAS)

    • Standard beamforming method
  • 2 Sparse DAS

    • DAS with under-sampled measurements
  • 3 Gradient Descent with L1 Regularization (GD+L1 Reg)

    • Directly optimizes reflectivity distribution with sparsity prior
  • 4 Implicit Neural Representations:

    • 4.1 INR-ReLU

      ✅ MLP-based, uses Fourier feature encoding

    • 4.2 SIREN

      ✅ MLP-based, uses sinusoidal activation functions

  • 5 Deep Image Prior (DIP)

    • U-Net style convolutional autoencoder
  • 6 DeepDecoder

    • Decoder-only convolutional network
  • 7 ConvDecoder

    • Variant of DeepDecoder with some modifications

6 SIMULATION RESULTS

在仿真数据上评估所提出的CoIR

  • 仿真数据生成:

    • Synthesizes radar data cube from 2D reflectivity images
    • Uses LiDAR point clouds to generate realistic reflectivity distributions
  • 评估标准:

    • PSNR, SSIM, MAE between reconstruction and ground truth image
  • 实验:

    • 1 Vary SNR from 35dB to 11dB

      ✅ ComDecoder gave superior PSNR over all methods at all SNRs

      ✅ ComDecoder and DIP gave comparable SSIM

      ✅ ComDecoder and DIP gave lowest MAE
      在这里插入图片描述

    • 2 Visualize reconstructions at 19dB SNR

      ✅ ComDecoder gave most accurate recovery of extended reflectors

      ✅ Other CNN methods also improved over Sparse DAS

      ✅ SIREN struggled to distinguish clutter and true reflectors
      在这里插入图片描述

    • 3 Additional analyses:

      ✅ Compared different CNN decoder architectures

      ✅ Evaluated computational complexity (in supplementary)

  • 总结:

    • ComDecoder 在 simulated data 上 SOTA

7 EXPERIMENTAL RESULTS

在真实采集的Coloradar dataset上评估所有方法

  • Radar system:

    • 77 GHz FMCW with 1.282 GHz bandwidth

    • 86λ/2 uniform linear array

  • Metrics :

    • 与 full array DAS reconstruction 进行对比
  • Experiments :

    • 1 不同场景下的重建效果

      ✅ ComDecoder accurately recovered dominant features

      ✅ DIP also performed well but more artifacts than ComDecoder

      ✅ SIREN struggled in indoor scene due to noise
      在这里插入图片描述

    • 2 Evaluate 鲁棒性 across multiple outdoor scenes

      ✅ ComDecoder gave high fidelity reconstructions closest to DAS

      ✅ SIREN fit strong reflectors but also artifacts

      ✅ GD+L1 located dominant reflectors but artifacts remained

      ✅ DIP performed well but more artifacts than ComDecoder

在这里插入图片描述

  • 总结:
    • ComDecoder 在 real data 上 SOTA
    • 显著好于其他untrained methods

8 DISCUSSION & LIMITATIONS

Limitations

  • 1 Assume static scene in forward model
    • Cannot handle moving objects
  • 2 Single bounce scattering model may not match real-world
  • 3 Slow optimization time (tens of seconds)
    • Explore different initialization strategies

Future work

  • 1 Demonstrated 2D range-angle slices due to linear array
    • 2D array needed for full 3D, but increases complexity
  • 2 CoIR could benefit other array-based imaging modalities:
    • SAR, ultrasound, etc.

9 CONCLUSION

Proposed CoIR

  • 1 Designed sparse linear array with 5.5x fewer antennas

  • 2 Proposed convolutional decoder architecture ComDecoder

  • 3 Demonstrated superior performance on simulated and real mmWave radar data

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/896931.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

stm32控制蜂鸣器源代码(附带proteus线路图)

说明&#xff1a; 1 PB0输出0时&#xff0c;蜂鸣器发生&#xff1b; 2 蜂鸣器电阻值如果太大会导致电流太小&#xff0c;发不出声音&#xff1b; 3蜂鸣器额定电压需要设置得低一点&#xff0c;可以是2V&#xff0c;但不能高于3V&#xff0c;这更右上角的电阻值有关系&#x…

cdh6.3.2 Flink On Yarn taskmanager任务分配倾斜问题的解决办法

业务场景&#xff1a; Flink On Yarn任务启动 组件版本&#xff1a; CDH&#xff1a;6.3.2 Flink&#xff1a;1.13.2 Hadoop&#xff1a;3.0.0 问题描述&#xff1a; 在使用FLink on Yarn调度过程中&#xff0c;发现taskmanager总是分配在集中的几个节点上&#xff0c;集群…

vscode ssh 远程 gdb 调试

一、点运行与调试&#xff0c;生成launch.json 文件 二、点添加配置&#xff0c;选择GDB 三、修改启动程序路径

java并发:synchronized锁详解

背景&#xff1a; 在java多线程当中&#xff0c;我们总有遇到过多个线程操作一个共享数据时&#xff0c;而这个最后的代码执行结果并没有按照我们的预期一样得到正确的结果。此时我们就需要让代码执行在操作共享变量时&#xff0c;要等一个线程操作完毕时&#xff0c;另一个线程…

科技项目验收检测报告获取有哪些注意事项,作用都有哪些?

验收测试报告 软件从研发到结束是一个很长的周期&#xff0c;对于软件想要完成上市或者是交付到用户手中之前我们还需要进行一次全面检测&#xff0c;也就是科技项目验收测试&#xff0c;此测试有着严格的要求&#xff0c;需要第三方软件测评机构来完成&#xff0c;并出具科技…

Kotlin协程runBlocking并发launch,Semaphore同步1个launch任务运行

Kotlin协程runBlocking并发launch&#xff0c;Semaphore同步1个launch任务运行 <dependency><groupId>org.jetbrains.kotlinx</groupId><artifactId>kotlinx-coroutines-core</artifactId><version>1.7.3</version><type>pom&…

供应链安全和第三方风险管理:讨论如何应对供应链中的安全风险,以及评估和管理第三方合作伙伴可能带来的威胁

第一章&#xff1a;引言 在当今数字化时代&#xff0c;供应链的安全性越来越受到重视。企业的成功不仅仅依赖于产品和服务的质量&#xff0c;还取决于供应链中的安全性。然而&#xff0c;随着供应链越来越复杂&#xff0c;第三方合作伙伴的参与也带来了一系列安全风险。本文将…

同步jenkinsfile流水线(sync-job)

环境 变量&#xff1a;env&#xff08;环境变量&#xff1a;sit/dev/simulation/prod/all&#xff09;&#xff0c;job&#xff08;job-name/all&#xff09;目录&#xff1a;/var/lib/jenkins/jenkinsfile environment.json&#xff1a; [roottest-01 jenkinsfile]# cat env…

Spring Boot实现IP地址解析

一、本地解析 如果使用本地ip解析的话&#xff0c;我们将会借助ip2region&#xff0c;该项目维护了一份较为详细的本地ip地址对应表&#xff0c;如果为了离线环境的使用&#xff0c;需要导入该项目依赖&#xff0c;并指定版本&#xff0c;不同版本的方法可能存在差异。 <d…

管理类联考——逻辑——真题篇——按知识分类——汇总篇——三、综合推理

文章目录 题-综合推理-分类1-排序真题&#xff08;2016-54-55&#xff09;-难度最高*****-综合推理-分类1-排序-画表排除法真题&#xff08;2016-54&#xff09;真题&#xff08;2016-55&#xff09;真题&#xff08;2019-36&#xff09;-综合推理-分类1-排序真题&#xff08;2…

回归预测 | MATLAB实现BES-BP秃鹰搜索算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-BP秃鹰搜索算法优化BP神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BES-BP秃鹰搜索算法优化BP神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本…

如何避免爬虫IP被屏蔽

各位爬友们好&#xff0c;作为一名专业的爬虫代理提供者&#xff0c;我要和大家分享一些避免爬虫IP被屏蔽的实用技巧。你知道吗&#xff0c;当我们爬取数据的时候&#xff0c;很容易被目标网站识别出来并封禁我们的IP地址&#xff0c;导致无法继续爬取数据。这个问题困扰了很多…

Q/GDW 1597-2015《国家电网公司应用软件系统通用安全要求》

电力安全测试报告 电力行业检测标准 随着信息技术的快速发展和广泛应用&#xff0c;应用软件系统已成为企业信息化建设中不可或缺的重要组成部分。然而&#xff0c;应用软件系统的安全问题也随之而来&#xff0c;给企业和用户带来了潜在的风险和威胁。为了提高应用软件系统的…

【第七讲---视觉里程计1】

视觉里程计就是通过对图像进行特征提取与匹配得到两帧之间的位姿&#xff0c;并进行估计相机运动。 经典SLAM中以相机位姿-路标来描述SLAM过程 特征提取与匹配 路标是三维空间中固定不变的点&#xff0c;可以在特定位姿下观测到在视觉SLAM中&#xff0c;可利用图像特征点作为…

opencv光流估计

光流估计 光流是空间运动物体在观测成像平面上的像素运动的“瞬时速度”&#xff0c;根据各个像素点的速度矢量特征&#xff0c;可以对图像进行动态分析&#xff0c;例如目标跟踪。 返回&#xff1a; 亮度恒定&#xff1a;同一点随着时间的变化&#xff0c;其亮度不会发生改变…

STM32 GPIO复习

GPIO General Purpose Input Output&#xff0c;即通用输入输出端口&#xff0c;简称GPIO。 负责采集外部器件的信息或控制外部器件工作&#xff0c;即输入输出。 不同型号&#xff0c;IO口数量可能不一样&#xff0c;可通过选型手册快速查询。 能快速翻转&#xff0c;每次翻…

基于QT4的GPX文件编辑器开发

GPX文件是记录地理点的文件,本质是一种xml文件。GPX文件目前没有很好的编辑器,因此作者决定开发一款无需安装的绿色编辑器。 在QT4开发中,XML可以用DOM来实现,但其逻辑并不是很清晰。使用模型视图反而会更加可读。因此在开发中,使用model-view模式来实现数据读写。 1 需…

高速、稳定、安全:4G工业路由器在户外环境下的组网优势

能够在无人值守的户外环境下实现组网和远程监控功能的4G工业路由器&#xff01;工业级路由器具备防尘、防水、耐高温等特性&#xff0c;适用应用在恶劣的户外及工业场景中&#xff0c;如远程农田监测、驾考科目二/科目三、智能交通系统、环境监控、煤矿数据采集、水利远程管理等…

视频播放实现示例Demo

学习链接 vuespringboot文件分片上传与边放边播实现 同步加载、播放视频的实现 ---- range blob mediaSource 通过调试技术&#xff0c;我理清了 b 站视频播放很快的原理 MSE (Media Source Extensions) 上手指南 浅聊音视频的媒体扩展&#xff08;Media Source Extension…

曲线救国 | 双非渣硕的秋招路

作者 | 带带大兄弟 面试锦囊之面经分享系列&#xff0c;持续更新中 欢迎后台回复"面试"加入讨论组交流噢 一篇旧文&#xff0c;可以参考~ 写在前面 双非渣硕&#xff0c;0实习&#xff0c;3篇水文&#xff0c;三个给老板当打工仔的nlp横向项目&#xff0c;八月份开…