reeds_sheep运动规划算法Python源码分析

news2025/1/18 16:50:28

   本文用于记录Python版本zhm-real / PathPlanning运动规划库中reeds_sheep算法的源码分析

   关于reeds sheep算法的原理介绍前文已经介绍过了,链接如下所示:

   《Reeds-Shepp曲线学习笔记及相关思考》

   《Reeds-Shepp曲线基础运动公式推导过程》

在这里插入图片描述


   正文:

   1、导入相关库

import math
import numpy as np
import matplotlib.pyplot as plt
import draw   (非Python官方库)

   2、参数初始化

STEP_SIZE = 0.2         #步长
MAX_LENGTH = 1000.0     #最大长度
PI = math.pi            

   (1)STEP_SIZE = 0.2:步长设定为0.2

   (2)MAX_LENGTH = 1000.0:最大长度限制设定为1000

   (3)PI = math.pi:math.pi是Python中math模块提供的圆周率的近似值,约为3.141592653589793。


   3、定义PATH类

# PATH 类
class PATH:
    def __init__(self, lengths, ctypes, L, x, y, yaw, directions):
        self.lengths = lengths  # 包含了路径各部分长度的列表 (+: forward, -: backward) [float]
        self.ctypes = ctypes  # 包含了路径各部分类型的列表 [string]
        self.L = L  # 整个路径的总长度 [float]
        self.x = x  # 表示路径最终位置的x坐标 [m]
        self.y = y  # 表示路径最终位置的y坐标 [m]
        self.yaw = yaw  # 表示路径最终位置的偏航角(偏转角) [rad]
        self.directions = directions  #包含了路径各部分方向的列表。列表中的每个元素都是一个整数,表示路径的每个部分的方向。正数表示正向前进,负数表示反向后退  forward: 1, backward:-1

   这段代码定义了一个名为PATH的类,这个类表示一个路径对象,其中包含了描述路径的各种信息。类的构造函数__init__用于初始化类的实例对象。

   该PATH类有七个属性:

   (1)lengths: 这是一个包含了路径各部分长度的列表。列表中的每个元素都是一个浮点数,表示路径的每个部分的长度。列表中的正数表示路径向前延伸,负数表示路径向后延伸。例如,如果路径由一段长为2米的向前部分和一段长为1.5米的向后部分组成,那么lengths列表可能是[2.0, -1.5]。

   (2)ctypes: 这是一个包含了路径各部分类型的列表。列表中的每个元素都是一个字符串,表示路径的每个部分的类型。路径可以由不同类型的部分组成,比如直线段、曲线段等。例如,如果路径由一段直线和一段圆弧组成,那么ctypes列表可能是[“直线”, “圆弧”]。

   (3)L: 这是一个浮点数,表示整个路径的总长度。

   (4)x: 这是一个浮点数,表示路径最终位置的x坐标。

   (5)y: 这是一个浮点数,表示路径最终位置的y坐标。

   (6)yaw: 这是一个浮点数,表示路径最终位置的偏航角(偏转角)。偏航角通常用弧度来表示,它描述了路径最终位置的朝向角度。

   (7)directions: 这是一个包含了路径各部分方向的列表。列表中的每个元素都是一个整数,表示路径的每个部分的方向。正数表示正向前进,负数表示反向后退。例如,如果路径由一段向前的部分和一段向后的部分组成,那么directions列表可能是[1, -1]。

   通过这个类,可以方便地创建和管理描述路径的对象,存储路径的各个属性,并在需要时进行相关操作和计算。


   4、calc_optimal_path函数

def calc_optimal_path(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=STEP_SIZE):
    paths = calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=step_size)

    minL = paths[0].L
    mini = 0

    for i in range(len(paths)):
        if paths[i].L <= minL:
            minL, mini = paths[i].L, i

    return paths[mini]

   calc_optimal_path函数,用于计算最优路径。函数接受一系列参数,包括起始位置、起始偏航角、目标位置、目标偏航角、最大曲率和步长大小。函数的目标是找到一条最优的路径,使得该路径的总长度最小。

   函数首先调用calc_all_paths函数来计算所有可能的路径。calc_all_paths函数返回一个路径对象列表,其中包含了所有可能的路径。

   接下来,函数通过遍历路径对象列表来找到总长度最小的路径。它首先将第一个路径的总长度设为当前的最小长度,并将对应的索引设为0。然后,对于每个路径,它将比较路径的总长度与当前最小长度的大小。如果路径的总长度小于等于当前最小长度,则将路径的总长度更新为当前最小长度,并将对应的索引更新为当前路径的索引。

   最后,函数返回总长度最小的路径对象。

   总的来说,calc_optimal_path函数的作用是根据给定的起始点和目标点的位姿信息、最大曲率信息、步长信息,从reeds_sheep曲线中找到所有可能得路径,并从中选出总长度最小的路径,作为最优路径并返回。


   5、calc_all_paths函数

def calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=STEP_SIZE):
    q0 = [sx, sy, syaw]
    q1 = [gx, gy, gyaw]

    paths = generate_path(q0, q1, maxc)

    for path in paths:
        x, y, yaw, directions = \
            generate_local_course(path.L, path.lengths,
                                  path.ctypes, maxc, step_size * maxc)

        # convert global coordinate
        path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for (ix, iy) in zip(x, y)]
        path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for (ix, iy) in zip(x, y)]
        path.yaw = [pi_2_pi(iyaw + q0[2]) for iyaw in yaw]
        path.directions = directions
        path.lengths = [l / maxc for l in path.lengths]
        path.L = path.L / maxc

    return paths

   calc_all_paths函数,用于计算所有可能的路径。该函数的输入参数包括起始位置、起始偏航角、目标位置、目标偏航角、最大曲率和步长大小(默认为STEP_SIZE)。

   在该函数中,首先将起始位置和目标位置以及其对应的偏航角保存在变量q0和q1中。然后,函数调用generate_path函数生成路径。generate_path函数接受起始位置、目标位置和最大曲率作为参数,并返回一个路径对象列表,其中包含了所有可能的路径。

   接下来,函数遍历路径对象列表,对于每个路径,它调用generate_local_course函数生成局部路径。generate_local_course函数接受路径的总长度、每个部分路径的长度、每个部分路径的类型、最大曲率和步长作为参数,并返回局部路径的x坐标、y坐标、偏航角和方向信息。

   然后,函数将局部路径转换为全局坐标系。它使用起始位置的偏航角将局部路径的x和y坐标进行旋转和平移,从而得到全局路径的x和y坐标。它还使用起始位置的偏航角将局部路径的偏航角进行旋转,得到全局路径的偏航角。

   最后,函数将路径对象的属性进行更新,包括x坐标、y坐标、偏航角、方向信息、部分路径长度和总路径长度。其中,每段路径的长度和总长度被归一化为最大曲率,以便进行比较和分析。

   最终,函数返回包含所有可能路径的列表。

   总的来说,calc_all_paths函数的作用是生成起点到终点之间的所有可能路径,并将这些路径转换为全局坐标系下的路径。


   6、set_path函数

def set_path(paths, lengths, ctypes):
    path = PATH([], [], 0.0, [], [], [], [])
    path.ctypes = ctypes
    path.lengths = lengths

    # check same path exist
    for path_e in paths:
        if path_e.ctypes == path.ctypes:
            if sum([x - y for x, y in zip(path_e.lengths, path.lengths)]) <= 0.01:
                return paths  # not insert path

    path.L = sum([abs(i) for i in lengths])

    if path.L >= MAX_LENGTH:
        return paths

    assert path.L >= 0.01
    paths.append(path)

    return paths

   set_path函数用于将一个路径添加到路径列表中。该函数接受三个参数:paths表示路径列表,lengths表示路径的长度列表,ctypes表示路径的类型列表。

   首先,函数创建一个空的PATH对象,并将路径的类型和长度分配给该对象的ctypes和lengths属性。

   然后,函数遍历已有的路径列表paths,检查是否存在相同类型的路径。如果找到一个类型相同且长度相差不大的路径,即两者长度之差小于等于0.01,则直接返回原始路径列表,不插入新路径。

   接下来,函数计算路径的总长度,并将其赋值给路径对象的L属性。如果路径的总长度超过了最大长度(MAX_LENGTH),则直接返回原始路径列表,不插入新路径。

   最后,函数对路径的总长度进行断言,确保其大于等于0.01。然后,将路径对象添加到路径列表中,并返回更新后的路径列表。

   总的来说,set_path函数的作用是将一个新的路径添加到路径列表中,并进行一些简单的验证和检查。


   7、48种reeds_sheep曲线计算函数

在这里插入图片描述

def LSL(x, y, phi):
    u, t = R(x - math.sin(phi), y - 1.0 + math.cos(phi))

    if t >= 0.0:
        v = M(phi - t)
        if v >= 0.0:
            return True, t, u, v

    return False, 0.0, 0.0, 0.0


def LSR(x, y, phi):
    u1, t1 = R(x + math.sin(phi), y - 1.0 - math.cos(phi))
    u1 = u1 ** 2

    if u1 >= 4.0:
        u = math.sqrt(u1 - 4.0)
        theta = math.atan2(2.0, u)
        t = M(t1 + theta)
        v = M(t - phi)

        if t >= 0.0 and v >= 0.0:
            return True, t, u, v

    return False, 0.0, 0.0, 0.0


def LRL(x, y, phi):
    u1, t1 = R(x - math.sin(phi), y - 1.0 + math.cos(phi))

    if u1 <= 4.0:
        u = -2.0 * math.asin(0.25 * u1)
        t = M(t1 + 0.5 * u + PI)
        v = M(phi - t + u)

        if t >= 0.0 and u <= 0.0:
            return True, t, u, v

    return False, 0.0, 0.0, 0.0


def SCS(x, y, phi, paths):
    flag, t, u, v = SLS(x, y, phi)

    if flag:
        paths = set_path(paths, [t, u, v], ["S", "L", "S"])

    flag, t, u, v = SLS(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["S", "R", "S"])

    return paths


def SLS(x, y, phi):
    phi = M(phi)

    if y > 0.0 and 0.0 < phi < PI * 0.99:
        xd = -y / math.tan(phi) + x
        t = xd - math.tan(phi / 2.0)
        u = phi
        v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
        return True, t, u, v
    elif y < 0.0 and 0.0 < phi < PI * 0.99:
        xd = -y / math.tan(phi) + x
        t = xd - math.tan(phi / 2.0)
        u = phi
        v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
        return True, t, u, v

    return False, 0.0, 0.0, 0.0


def CSC(x, y, phi, paths):
    flag, t, u, v = LSL(x, y, phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["L", "S", "L"])

    flag, t, u, v = LSL(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"])

    flag, t, u, v = LSL(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["R", "S", "R"])

    flag, t, u, v = LSL(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"])

    flag, t, u, v = LSR(x, y, phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["L", "S", "R"])

    flag, t, u, v = LSR(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"])

    flag, t, u, v = LSR(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["R", "S", "L"])

    flag, t, u, v = LSR(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"])

    return paths


def CCC(x, y, phi, paths):
    flag, t, u, v = LRL(x, y, phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["L", "R", "L"])

    flag, t, u, v = LRL(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"])

    flag, t, u, v = LRL(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, u, v], ["R", "L", "R"])

    flag, t, u, v = LRL(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"])

    # backwards
    xb = x * math.cos(phi) + y * math.sin(phi)
    yb = x * math.sin(phi) - y * math.cos(phi)

    flag, t, u, v = LRL(xb, yb, phi)
    if flag:
        paths = set_path(paths, [v, u, t], ["L", "R", "L"])

    flag, t, u, v = LRL(-xb, yb, -phi)
    if flag:
        paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"])

    flag, t, u, v = LRL(xb, -yb, -phi)
    if flag:
        paths = set_path(paths, [v, u, t], ["R", "L", "R"])

    flag, t, u, v = LRL(-xb, -yb, phi)
    if flag:
        paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"])

    return paths


def calc_tauOmega(u, v, xi, eta, phi):
    delta = M(u - v)
    A = math.sin(u) - math.sin(delta)
    B = math.cos(u) - math.cos(delta) - 1.0

    t1 = math.atan2(eta * A - xi * B, xi * A + eta * B)
    t2 = 2.0 * (math.cos(delta) - math.cos(v) - math.cos(u)) + 3.0

    if t2 < 0:
        tau = M(t1 + PI)
    else:
        tau = M(t1)

    omega = M(tau - u + v - phi)

    return tau, omega


def LRLRn(x, y, phi):
    xi = x + math.sin(phi)
    eta = y - 1.0 - math.cos(phi)
    rho = 0.25 * (2.0 + math.sqrt(xi * xi + eta * eta))

    if rho <= 1.0:
        u = math.acos(rho)
        t, v = calc_tauOmega(u, -u, xi, eta, phi)
        if t >= 0.0 and v <= 0.0:
            return True, t, u, v

    return False, 0.0, 0.0, 0.0


def LRLRp(x, y, phi):
    xi = x + math.sin(phi)
    eta = y - 1.0 - math.cos(phi)
    rho = (20.0 - xi * xi - eta * eta) / 16.0

    if 0.0 <= rho <= 1.0:
        u = -math.acos(rho)
        if u >= -0.5 * PI:
            t, v = calc_tauOmega(u, u, xi, eta, phi)
            if t >= 0.0 and v >= 0.0:
                return True, t, u, v

    return False, 0.0, 0.0, 0.0


def CCCC(x, y, phi, paths):
    flag, t, u, v = LRLRn(x, y, phi)
    if flag:
        paths = set_path(paths, [t, u, -u, v], ["L", "R", "L", "R"])

    flag, t, u, v = LRLRn(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, -u, u, -v], ["L", "R", "L", "R"])

    flag, t, u, v = LRLRn(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, u, -u, v], ["R", "L", "R", "L"])

    flag, t, u, v = LRLRn(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, -u, u, -v], ["R", "L", "R", "L"])

    flag, t, u, v = LRLRp(x, y, phi)
    if flag:
        paths = set_path(paths, [t, u, u, v], ["L", "R", "L", "R"])

    flag, t, u, v = LRLRp(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, -u, -u, -v], ["L", "R", "L", "R"])

    flag, t, u, v = LRLRp(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, u, u, v], ["R", "L", "R", "L"])

    flag, t, u, v = LRLRp(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, -u, -u, -v], ["R", "L", "R", "L"])

    return paths


def LRSR(x, y, phi):
    xi = x + math.sin(phi)
    eta = y - 1.0 - math.cos(phi)
    rho, theta = R(-eta, xi)

    if rho >= 2.0:
        t = theta
        u = 2.0 - rho
        v = M(t + 0.5 * PI - phi)
        if t >= 0.0 and u <= 0.0 and v <= 0.0:
            return True, t, u, v

    return False, 0.0, 0.0, 0.0


def LRSL(x, y, phi):
    xi = x - math.sin(phi)
    eta = y - 1.0 + math.cos(phi)
    rho, theta = R(xi, eta)

    if rho >= 2.0:
        r = math.sqrt(rho * rho - 4.0)
        u = 2.0 - r
        t = M(theta + math.atan2(r, -2.0))
        v = M(phi - 0.5 * PI - t)
        if t >= 0.0 and u <= 0.0 and v <= 0.0:
            return True, t, u, v

    return False, 0.0, 0.0, 0.0


def CCSC(x, y, phi, paths):
    flag, t, u, v = LRSL(x, y, phi)
    if flag:
        paths = set_path(paths, [t, -0.5 * PI, u, v], ["L", "R", "S", "L"])

    flag, t, u, v = LRSL(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["L", "R", "S", "L"])

    flag, t, u, v = LRSL(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, -0.5 * PI, u, v], ["R", "L", "S", "R"])

    flag, t, u, v = LRSL(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["R", "L", "S", "R"])

    flag, t, u, v = LRSR(x, y, phi)
    if flag:
        paths = set_path(paths, [t, -0.5 * PI, u, v], ["L", "R", "S", "R"])

    flag, t, u, v = LRSR(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["L", "R", "S", "R"])

    flag, t, u, v = LRSR(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, -0.5 * PI, u, v], ["R", "L", "S", "L"])

    flag, t, u, v = LRSR(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["R", "L", "S", "L"])

    # backwards
    xb = x * math.cos(phi) + y * math.sin(phi)
    yb = x * math.sin(phi) - y * math.cos(phi)

    flag, t, u, v = LRSL(xb, yb, phi)
    if flag:
        paths = set_path(paths, [v, u, -0.5 * PI, t], ["L", "S", "R", "L"])

    flag, t, u, v = LRSL(-xb, yb, -phi)
    if flag:
        paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["L", "S", "R", "L"])

    flag, t, u, v = LRSL(xb, -yb, -phi)
    if flag:
        paths = set_path(paths, [v, u, -0.5 * PI, t], ["R", "S", "L", "R"])

    flag, t, u, v = LRSL(-xb, -yb, phi)
    if flag:
        paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["R", "S", "L", "R"])

    flag, t, u, v = LRSR(xb, yb, phi)
    if flag:
        paths = set_path(paths, [v, u, -0.5 * PI, t], ["R", "S", "R", "L"])

    flag, t, u, v = LRSR(-xb, yb, -phi)
    if flag:
        paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["R", "S", "R", "L"])

    flag, t, u, v = LRSR(xb, -yb, -phi)
    if flag:
        paths = set_path(paths, [v, u, -0.5 * PI, t], ["L", "S", "L", "R"])

    flag, t, u, v = LRSR(-xb, -yb, phi)
    if flag:
        paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["L", "S", "L", "R"])

    return paths


def LRSLR(x, y, phi):
    # formula 8.11 *** TYPO IN PAPER ***
    xi = x + math.sin(phi)
    eta = y - 1.0 - math.cos(phi)
    rho, theta = R(xi, eta)

    if rho >= 2.0:
        u = 4.0 - math.sqrt(rho * rho - 4.0)
        if u <= 0.0:
            t = M(math.atan2((4.0 - u) * xi - 2.0 * eta, -2.0 * xi + (u - 4.0) * eta))
            v = M(t - phi)

            if t >= 0.0 and v >= 0.0:
                return True, t, u, v

    return False, 0.0, 0.0, 0.0


def CCSCC(x, y, phi, paths):
    flag, t, u, v = LRSLR(x, y, phi)
    if flag:
        paths = set_path(paths, [t, -0.5 * PI, u, -0.5 * PI, v], ["L", "R", "S", "L", "R"])

    flag, t, u, v = LRSLR(-x, y, -phi)
    if flag:
        paths = set_path(paths, [-t, 0.5 * PI, -u, 0.5 * PI, -v], ["L", "R", "S", "L", "R"])

    flag, t, u, v = LRSLR(x, -y, -phi)
    if flag:
        paths = set_path(paths, [t, -0.5 * PI, u, -0.5 * PI, v], ["R", "L", "S", "R", "L"])

    flag, t, u, v = LRSLR(-x, -y, phi)
    if flag:
        paths = set_path(paths, [-t, 0.5 * PI, -u, 0.5 * PI, -v], ["R", "L", "S", "R", "L"])

    return paths

   8、generate_local_cours函数

def generate_local_course(L, lengths, mode, maxc, step_size):
    point_num = int(L / step_size) + len(lengths) + 3

    px = [0.0 for _ in range(point_num)]
    py = [0.0 for _ in range(point_num)]
    pyaw = [0.0 for _ in range(point_num)]
    directions = [0 for _ in range(point_num)]
    ind = 1

    if lengths[0] > 0.0:
        directions[0] = 1
    else:
        directions[0] = -1

    if lengths[0] > 0.0:
        d = step_size
    else:
        d = -step_size

    pd = d
    ll = 0.0

    for m, l, i in zip(mode, lengths, range(len(mode))):
        if l > 0.0:
            d = step_size
        else:
            d = -step_size

        ox, oy, oyaw = px[ind], py[ind], pyaw[ind]

        ind -= 1
        if i >= 1 and (lengths[i - 1] * lengths[i]) > 0:
            pd = -d - ll
        else:
            pd = d - ll

        while abs(pd) <= abs(l):
            ind += 1
            px, py, pyaw, directions = \
                interpolate(ind, pd, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
            pd += d

        ll = l - pd - d  # calc remain length

        ind += 1
        px, py, pyaw, directions = \
            interpolate(ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)

    # remove unused data
    while px[-1] == 0.0:
        px.pop()
        py.pop()
        pyaw.pop()
        directions.pop()

    return px, py, pyaw, directions

   generate_local_cours函数是用于生成局部路径的。输入参数包括::总路径的长度L、包含每个局部路径的长度的列表lengths、包含每个局部路径模式的列表mode、 控制曲线的最大曲率maxc、生成路径时进行插值时的步长大小step_size。

   该函数的主要步骤如下:

   (1)根据总路径长度和步长大小计算局部路径的点数(point_num)。

   (2)创建空列表 px、py、pyaw 和 directions,用于存储路径点的 x 坐标、y 坐标、偏航角和方向信息。

   (3)初始化变量 ind 为 1,directions[0] 为起始路径的方向(正向或反向)。

   (4)根据起始路径的长度,确定路径方向(正向为正步长,反向为负步长)。

   (5)进入循环,依次处理每个局部路径:

     (5.1)计算局部路径的步长方向 d。

     (5.2)获取前一个路径点的坐标和偏航角作为起点。

     (5.3)根据前一个路径点的索引,以及前一个路径长度和当前路径长度的符号关系,计算当前路径段的步长方向 pd。

     (5.4)在当前路径段的长度范围内,以步长 d 进

     (5.5)行插值,生成路径点,并更新路径信息。

     (5.6)计算剩余长度 ll。

     (5.7)在当前路径段的末尾,以当前路径长度进行插值,生成路径点,并更新路径信息。

   (6)移除未使用的数据,即末尾多余的零值点。

   (7)返回生成的路径点列表 px、py、pyaw 和 directions。

   总的来说,generate_local_cours函数的作用是根据给定的局部路径长度和模式,生成一系列插值点,用于描述机器人在整个路径上的运动轨迹。路径点包括 x 和 y 坐标、偏航角和方向信息,可以在后续的路径规划和控制中使用。


   9、interpolate函数

def interpolate(ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions):
    if m == "S":
        px[ind] = ox + l / maxc * math.cos(oyaw)
        py[ind] = oy + l / maxc * math.sin(oyaw)
        pyaw[ind] = oyaw
    else:
        ldx = math.sin(l) / maxc
        if m == "L":
            ldy = (1.0 - math.cos(l)) / maxc
        elif m == "R":
            ldy = (1.0 - math.cos(l)) / (-maxc)

        gdx = math.cos(-oyaw) * ldx + math.sin(-oyaw) * ldy
        gdy = -math.sin(-oyaw) * ldx + math.cos(-oyaw) * ldy
        px[ind] = ox + gdx
        py[ind] = oy + gdy

    if m == "L":
        pyaw[ind] = oyaw + l
    elif m == "R":
        pyaw[ind] = oyaw - l

    if l > 0.0:
        directions[ind] = 1
    else:
        directions[ind] = -1

    return px, py, pyaw, directions

   这个程序定义了一个插值函数 interpolate,它根据给定的参数生成路径点。函数接受以下参数::要生成的路径点的索引ind、路径段的长度l、路径段的模式m(可以是 “S”、“L” 或 “R”)控制曲线的最大曲率maxc、前一个路径点的坐标和偏航角ox, oy, oyaw:、存储路径点的列表px, py, pyaw、存储路径方向的列表directions。

   函数的主要逻辑如下:

   首先,根据路径段的模式,分为直线段(“S”)和曲线段(“L”、“R”)两种情况进行处理。如果路径段是直线段,则计算直线段上每个点的 x 和 y 坐标,基于前一个路径点的坐标、偏航角和路径长度。更新路径点列表 px、py 和 pyaw。

   如果路径段是曲线段,则根据曲线段的模式和路径长度,计算曲线段在 x 和 y 方向上的增量,将增量根据前一个路径点的偏航角进行旋转和平移,计算得到当前路径点的坐标。更新路径点列表 px 和 py。

   然后,根据路径段的模式,计算当前路径点的偏航角,并更新路径点列表 pyaw。之后,根据路径段的长度,确定路径方向(正向或反向),并更新路径方向列表 directions。

   最后,返回更新后的路径点列表 px、py、pyaw 和 directions。

   总的来说,interpolate函数的作用是根据给定的路径段信息,在前一个路径点的基础上计算出当前路径点的坐标、偏航角和方向,并更新路径信息。这些路径点可以用于描述机器人在路径上的运动轨迹。


   10、generate_path函数

def generate_path(q0, q1, maxc):
    dx = q1[0] - q0[0]
    dy = q1[1] - q0[1]
    dth = q1[2] - q0[2]
    c = math.cos(q0[2])
    s = math.sin(q0[2])
    x = (c * dx + s * dy) * maxc
    y = (-s * dx + c * dy) * maxc

    paths = []
    paths = SCS(x, y, dth, paths)
    paths = CSC(x, y, dth, paths)
    paths = CCC(x, y, dth, paths)
    paths = CCCC(x, y, dth, paths)
    paths = CCSC(x, y, dth, paths)
    paths = CCSCC(x, y, dth, paths)

    return paths

   这个程序定义了一个函数 generate_path,用于生成从起始状态到目标状态的路径。函数接受以下参数:

   q0: 起始状态,包含 x、y 和偏航角(以弧度表示)的列表。

   q1: 目标状态,与 q0 结构相同。

   maxc: 控制曲线的最大曲率。

   函数的主要逻辑如下:

   首先,计算 x、y 和偏航角的差值 dx、dy 和 dth。根据起始状态的偏航角,计算出一个旋转矩阵的元素 c 和 s。根据旋转矩阵将差值 dx 和 dy 进行旋转和缩放,得到 x 和 y。

   然后,创建一个空的路径列表 paths。将 x、y 和 dth 分别传递给一系列路径生成函数(SCS、CSC、CCC、CCCC、CCSC 和 CCSCC),并在每次调用后更新 paths。

   最后,返回生成的路径列表 paths。

   总的来说,generate_path函数的作用是根据起始状态和目标状态之间的差异,利用不同的路径生成函数生成一系列可能的路径。这些路径描述了从起始状态到目标状态的运动轨迹,可以用于路径规划和机器人运动控制。


   11、pi_2_pi函数

def pi_2_pi(theta):
    while theta > PI:
        theta -= 2.0 * PI

    while theta < -PI:
        theta += 2.0 * PI

    return theta

   这个程序定义了一个函数 pi_2_pi,用于将给定的角度值 theta 转换到区间 [-π, π] 内。函数的实现逻辑如下:

   进入一个循环,只要 theta 大于 π,就执行下面的操作。循环的目的是将角度值转换为 [-π, π] 范围内的值。在每次迭代中,从 theta 中减去 2π,直到 theta 小于或等于 π。

   当 theta 小于 -π 时,执行另一个循环。循环的目的是将角度值转换为 [-π, π] 范围内的值。在每次迭代中,将 theta 加上 2π,直到 theta 大于或等于 -π。

   最后,返回转换后的角度值 theta。

   总的来说,pi_2_pi函数的作用是将任意角度值映射到一个等价的角度值,使其处于 [-π, π] 范围内。这在许多应用中很有用,例如在机器人控制中,确保角度的连续性和一致性。


   12、R函数

def R(x, y):
    """
    Return the polar coordinates (r, theta) of the point (s, y)
    """
    r = math.hypot(x, y)
    theta = math.atan2(y, x)

    return r, theta

   这个程序定义了一个函数 R,用于计算点 (x, y) 的极坐标 (r, theta)。函数的实现逻辑如下:

   首先,使用 math.hypot(x, y) 函数计算点 (x, y) 到原点的距离 r。math.hypot 函数返回两个参数的欧几里得范数,即 (x, y) 的平方和的平方根。然后,使用 math.atan2(y, x) 函数计算点 (x, y) 的极角 theta。math.atan2 函数返回 (y, x) 的反正切值,以弧度表示。最后,返回计算得到的极坐标 (r, theta)。

   总的来说,这个R函数可以用于将直角坐标系下的点 (x, y) 转换为极坐标系下的 (r, theta) 表示。极坐标可以更方便地描述点的位置和方向,特别适用于需要考虑距离和角度的问题,如机器人路径规划、图像处理等领域。


   13、M函数

def M(theta):
    """
    Regulate theta to -pi <= theta < pi
    """
    phi = theta % (2.0 * PI)

    if phi < -PI:
        phi += 2.0 * PI
    if phi > PI:
        phi -= 2.0 * PI

    return phi

   这个程序定义了一个函数 M,用于将给定角度 theta 调整到 -pi <= theta < pi 的范围内。函数的实现逻辑如下:

   首先,使用取模运算 % 将输入角度 theta 转换为在 0 到 2*pi 之间的角度 phi。取模运算是将一个数除以另一个数得到的余数。

   然后进行判断,如果 phi 小于 -pi,则将其调整增加 2pi,使其落在 [-pi, pi) 的范围内。如果 phi 大于等于 pi,则将其调整减去 2pi,使其落在 [-pi, pi) 的范围内。

   最后,返回调整后的角度 phi。

   总的来说,这个M函数的作用是规范化角度,确保其在 -pi 到 pi 之间。这在很多计算和编程场景中非常有用,因为在这个范围内,角度的表示是唯一的,且方便进行数值计算和比较。


   14、get_label函数

def get_label(path):
    label = ""

    for m, l in zip(path.ctypes, path.lengths):
        label = label + m
        if l > 0.0:
            label = label + "+"
        else:
            label = label + "-"

    return label

   这个程序定义了一个函数 get_label,用于根据给定路径 path 生成一个标签。路径是由一系列运动模式(m)和对应的长度(l)组成的。函数的实现逻辑如下:

   首先,定义一个空字符串 label,用于存储生成的标签。然后,使用 zip 函数将运动模式和长度两个列表进行逐个配对,依次遍历路径中的每个运动模式和长度。对于每个配对的运动模式和长度,将运动模式添加到 label 字符串中。

   然后进行判断,如果长度 l 大于 0.0,则在运动模式后面添加一个正号 +,否则添加一个负号 -。最后,遍历完所有配对后,返回生成的标签 label。

   总的来说,get_label函数的作用是根据路径中的运动模式和长度生成一个可读性较高的标签,用于描述路径的运动方式和方向。


   15、calc_curvature函数

def calc_curvature(x, y, yaw, directions):
    c, ds = [], []

    for i in range(1, len(x) - 1):
        dxn = x[i] - x[i - 1]
        dxp = x[i + 1] - x[i]
        dyn = y[i] - y[i - 1]
        dyp = y[i + 1] - y[i]
        dn = math.hypot(dxn, dyn)
        dp = math.hypot(dxp, dyp)
        dx = 1.0 / (dn + dp) * (dp / dn * dxn + dn / dp * dxp)
        ddx = 2.0 / (dn + dp) * (dxp / dp - dxn / dn)
        dy = 1.0 / (dn + dp) * (dp / dn * dyn + dn / dp * dyp)
        ddy = 2.0 / (dn + dp) * (dyp / dp - dyn / dn)
        curvature = (ddy * dx - ddx * dy) / (dx ** 2 + dy ** 2)
        d = (dn + dp) / 2.0

        if np.isnan(curvature):
            curvature = 0.0

        if directions[i] <= 0.0:
            curvature = -curvature

        if len(c) == 0:
            ds.append(d)
            c.append(curvature)

        ds.append(d)
        c.append(curvature)

    ds.append(ds[-1])
    c.append(c[-1])

    return c, ds

   这个程序定义了一个函数 calc_curvature,用于计算路径的曲率。函数接受四个参数:x、y、yaw和directions,分别表示路径的横坐标、纵坐标、偏航角和方向。

   函数的实现逻辑如下:

   首先,定义两个空列表 c 和 ds,用于存储计算得到的曲率和路径段长度。然后,使用 range 函数从索引1开始,遍历路径中的每个点,到倒数第2个点为止。

   对于每个点,计算该点与前后相邻点的坐标差值,并计算出前后两个向量的模长。根据差值和模长计算出局部斜率和曲率,并考虑曲率的正负。如果曲率为非数值(NaN),将其设置为0.0。

   如果路径段的方向 directions[i] 小于等于0.0,则将曲率取反。如果 c 列表为空(即第一个点),则将当前路径段长度 d 添加到 ds 列表中,并将当前曲率 curvature 添加到 c 列表中。

   对于其他点,将路径段长度 d 添加到 ds 列表中,并将曲率 curvature 添加到 c 列表中。将最后一个路径段的长度和曲率添加到 ds 和 c 列表的末尾,使其长度与输入的 x 和 y 列表相同。

   最后,返回计算得到的曲率列表 c 和路径段长度列表 ds。

   总的来说,calc_curvature函数的目的是根据路径的坐标和方向信息计算路径上各点的曲率,并返回曲率和路径段长度的列表。曲率描述了路径弯曲的程度,可以用于路径规划和控制。


   16、check_path函数

def check_path(sx, sy, syaw, gx, gy, gyaw, maxc):
    paths = calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc)

    assert len(paths) >= 1

    for path in paths:
        assert abs(path.x[0] - sx) <= 0.01
        assert abs(path.y[0] - sy) <= 0.01
        assert abs(path.yaw[0] - syaw) <= 0.01
        assert abs(path.x[-1] - gx) <= 0.01
        assert abs(path.y[-1] - gy) <= 0.01
        assert abs(path.yaw[-1] - gyaw) <= 0.01

        # course distance check
        d = [math.hypot(dx, dy)
             for dx, dy in zip(np.diff(path.x[0:len(path.x) - 1]),
                               np.diff(path.y[0:len(path.y) - 1]))]

        for i in range(len(d)):
            assert abs(d[i] - STEP_SIZE) <= 0.001

   这个程序定义了一个函数 check_path,用于检查计算得到的路径是否满足一些约束条件。

   函数接受七个参数:起点坐标 sx 和 sy、起点偏航角 syaw、终点坐标 gx 和 gy、终点偏航角 gyaw,以及最大曲率 maxc。

   函数的实现逻辑如下:

   首先,通过调用 calc_all_paths 函数计算从起点到终点的所有可能路径,并将这些路径存储在列表 paths 中。并使用 assert 语句确保计算得到的路径列表 paths 不为空(长度至少为1),如果为空,则会触发异常。

   然后,对于每个路径 path,使用 assert 语句确保起点和终点的坐标、偏航角与输入的起点 sx、sy、syaw 以及终点 gx、gy、gyaw 的坐标、偏航角相差不超过0.01。如果超过了这个阈值,也会触发异常。

   接下来,检查路径上相邻两点之间的距离是否接近预设的步长 STEP_SIZE(这个步长的值未在提供的代码片段中给出,可能在其他地方定义)。对于每个路径,计算路径上相邻两点的距离 d 并与 STEP_SIZE 比较,如果距离与 STEP_SIZE 的差值超过0.001,则会触发异常。

   总的来说,check_path函数的作用是在路径规划过程中验证计算得到的路径是否满足一些基本的约束条件,包括起点、终点和路径长度的检查。如果有任何条件不满足,该函数将会触发异常,提示路径计算存在问题。


   17、主函数

def main():
    states = [(-3, 3, 120), (10, -7, 30), (10, 13, 30), (20, 5, -25),
              (35, 10, 180), (32, -10, 180), (5, -12, 90)]
    
    max_c = 0.1  # max curvature
    path_x, path_y, yaw = [], [], []

    for i in range(len(states) - 1):
        s_x = states[i][0]
        s_y = states[i][1]
        s_yaw = np.deg2rad(states[i][2])
        g_x = states[i + 1][0]
        g_y = states[i + 1][1]
        g_yaw = np.deg2rad(states[i + 1][2])

        path_i = calc_optimal_path(s_x, s_y, s_yaw,
                                   g_x, g_y, g_yaw, max_c)

        path_x += path_i.x
        path_y += path_i.y
        yaw += path_i.yaw

    # animation
    plt.ion()
    plt.figure(1)

    for i in range(len(path_x)):
        plt.clf()
        plt.plot(path_x, path_y, linewidth=1, color='gray')

        for x, y, theta in states:
            draw.Arrow(x, y, np.deg2rad(theta), 2, 'blueviolet')

        draw.Car(path_x[i], path_y[i], yaw[i], 1.5, 3)

        plt.axis("equal")
        plt.title("Simulation of Reeds-Shepp Curves")
        plt.axis([-5, 15,-25, -10])
        plt.draw()
        plt.pause(0.001)

    plt.pause(1)


if __name__ == '__main__':
    main()

   终于到主函数了,主函数中执行路径规划的示例并进行动画展示。

   首先。定义了一个状态列表 states,其中包含了一系列起点和终点的坐标以及偏航角。每个状态由三个元素组成,分别表示 x 坐标、y 坐标和偏航角(以度为单位)。

   接下来定义了最大曲率 max_c,用于路径规划过程中限制曲率的最大值。

   然后,通过循环遍历状态列表,对相邻的两个状态进行路径规划。对于每对相邻状态,提取起点的 x、y 坐标和偏航角,以及终点的 x、y 坐标和偏航角,并调用 calc_optimal_path 函数计算最优路径。并将每个计算得到的路径的 x、y 坐标和偏航角分别添加到 path_x、path_y 和 yaw 列表中。

   接下来,使用 plt.ion() 开启交互模式,并创建一个图形窗口。通过循环遍历 path_x 列表中的每个元素,在每个时间步中,清除图形窗口的内容,绘制路径、起点和终点的箭头以及当前时间步的车辆位置。然后设置图形窗口的坐标轴范围、标题等,并调用 plt.draw() 和 plt.pause() 函数进行动画展示。

   最后,通过调用 plt.pause(1) 在动画结束后暂停一秒钟。

   总的来说,主函数中主要执行路径规划的示例,并通过动画展示路径规划的结果。


在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/896134.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vite初始化vue3项目(配置自动格式化工具与git提交规范工具)

初始化项目 vite构建vue项目还是比较简单的&#xff0c;简单配置选择一下就行了 初始化命令 npm init vuelatest初始化最新版本vue项目 2. 基本选项含义 Add TypeScript 是否添加TSADD JSX是否支持JSXADD Vue Router是否添加Vue Router路由管理工具ADD Pinia 是否添加pinia…

直方图均衡化和自适应直方图均衡化

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 均衡化是数字图像处理中常用的一种技术&#xff0c;用于增强图像的视觉效果和对比度。&#xff0c;今天我们将实现对同一张图像的直方图均衡化和自适应直方图均衡化处理&#xff0c;学习一下两者的的基本原理和实现过程&a…

docker搭建redis主从复制

docker安装redis docker pull redis:latest创建目录结构 用于挂载数据卷配置文件等 运行redis容器 主redis配置 下面这种方式挂载的配置文件不生效。 docker run -d \--name master_redis_6379 \-p 6379:6379 \--restart unless-stopped \-v /mydata/master_redis/data:/da…

集简云本周新增/更新:新增3大功能,集成19款应用,更新5款应用,新增近290个动作

本周更新概要 功能更新 ◉ 新增功能&#xff1a;语聚AI开放API功能 ◉ 新增功能&#xff1a;数据表表格公开分享功能 ◉ 新增功能&#xff1a;浏览器页面操作页面内容读取(增强版本&#xff09; 应用新增 新增应用&#xff1a;赛捷CRM 新增应用&#xff1a;快跑者 新增应…

LeGO-Loam代码解析(一) 项目介绍、论文解读、配置安装

目录 1.项目介绍 2. 论文解读 LeGO-LOAM&#xff1a;轻量级且地面优化的可变地形激光里程计与建图 2.1 摘要 2.2 介绍 2.3 正文部分1 --- System Review 2.4 正文部分2 --- Segmatation&#xff08;地面点角面点分离&#xff09; 2.5 Feature Extraction 正文部分3 ---…

QT Quick之quick与C++混合编程

Qt quick能够生成非常绚丽界面&#xff0c;但有其局限性的&#xff0c;对于一些业务逻辑和复杂算法&#xff0c;比如低阶的网络编程如 QTcpSocket &#xff0c;多线程&#xff0c;又如 XML 文档处理类库 QXmlStreamReader / QXmlStreamWriter 等等&#xff0c;在 QML 中要么不可…

【操作系统考点汇集】操作系统考点汇集

关于操作系统可能考察的知识点 操作系统基本原理 什么是操作系统&#xff1f; 操作系统是指控制和管理整个计算机系统的硬件和软件资源&#xff0c;并合理地组织调度计算机的工作和资源的分配&#xff0c;以提供给用户和它软件方便的接口和环境&#xff0c;是计算机系统中最基…

【C语言学习】参数传递

调用函数 1.如果函数有参数&#xff0c;调用函数时必须传递给它数量、类型正确的的值。 2.可以传递给函数的值是表达式的结果&#xff0c;包括&#xff1a; 字面量 变量 函数的返回值 计算的结果 int a,b,c; a5; b6; cmax(10,12); cmax(a,b); cmax(c,23); cmax(max(23,45),a);…

opencv实战项目-停车位计数

手势识别系列文章目录 手势识别是一种人机交互技术&#xff0c;通过识别人的手势动作&#xff0c;从而实现对计算机、智能手机、智能电视等设备的操作和控制。 1. opencv实现手部追踪&#xff08;定位手部关键点&#xff09; 2.opencv实战项目 实现手势跟踪并返回位置信息&a…

前端基础(JavaScript语法)

前言&#xff1a;今天学习JavaScript的基本语法&#xff0c;包括变量、函数、对象、数组。 目录 JavaScript 变量 函数 对象 数组 JavaScript 变量 定义变量 判断语句 判断等于&#xff1a; 判断不等于&#xff1a;! if else语句 if(vavb){ console.log("…

Harmony OS教程学习笔记

基础知识 1.如何修改程序启动的第一个页面&#xff1f; 不想使用创建的默认的页面&#xff0c;这时需要修改启动页面&#xff0c;修改的地方在EntryAbility文件中的onWindowStageCreate方法中。 onWindowStageCreate(windowStage: window.WindowStage) {// Main window is cr…

解决无法访问 Github 问题

GitHub作为程序员访问最频繁的网站&#xff0c;程序员们经常需要访问 Github找开源项目、学习新框架、管理自己的个人开源项目等等。 github加速器 因为GitHub属于国外的网站&#xff0c;直接访问的话&#xff0c;速度非常慢&#xff0c;甚至访问不了&#xff0c; 今天给大家…

centos下使用jemalloc解决Mysql内存泄漏问题

参考&#xff1a; MySQL bug&#xff1a;https://bugs.mysql.com/bug.php?id83047&tdsourcetags_pcqq_aiomsg https://github.com/jemalloc/jemalloc/blob/dev/INSTALL.md &#xff08;1&#xff09;ptmalloc 是glibc的内存分配管理 &#xff08;2&#xff09;tcmalloc…

如何批量修改图片名为不同名称

如何批量修改图片名为不同名称&#xff1f;当今社会&#xff0c;因为人们都养成了随手拍照的习惯&#xff0c;所以拥有上千上万张照片的相册已经司空见惯不足为奇。然而&#xff0c;我们在保存这些照片时往往都会碰到一个大难题——电脑中的图片名称千奇百怪&#xff0c;让整个…

打开软件提示mfc100u.dll缺失是什么意思?要怎么处理?

当你打开某个软件或者运行游戏&#xff0c;系统提示mfc100u.dll丢失&#xff0c;此时这个软件或者游戏根本无法运行。其实&#xff0c;mfc100u.dll是动态库文件&#xff0c;它是VS2010编译的软件所产生的&#xff0c;如果电脑运行程序时提示缺少mfc100u.dll文件&#xff0c;程序…

由“美”出发 听艺术家林曦关于美育与智慧的探讨

不久前&#xff0c;林曦老师与我们的老朋友「十点读书」进行了一次线上直播&#xff0c;有关林曦老师十余年的书法教学&#xff0c;和传统美育的心得&#xff0c;以及因此诞生的新书《无用之美》。      这一次的直播&#xff0c;由“美”的主题出发&#xff0c;延伸出美育…

微服务参数透传实现

说明&#xff1a;在微服务架构中&#xff0c;用户身份经网关验证后&#xff0c;我们可以将用户信息&#xff0c;如ID加入到请求头上。后面的微服务中&#xff0c;可以设置一个拦截器&#xff0c;拦截请求&#xff0c;获取请求头上的用户ID&#xff0c;加入到ThreadLocal中。 最…

Spring【学习记录一】

Spring内容解释 早期的Spring仅指代Spring Framework&#xff0c;后来基于Spring Framework孵化出大量的项目&#xff0c;Spring的含义变成了指代Spring家族 Spring Framework是Spring家族所有成员的基础&#xff0c;想要学透Spring&#xff0c;就必须要掌握Spring Framework…

电脑提示concrt140.dll丢失或找不到怎么恢复

现在系统在安装的时候为了简化包体会将一些组件给删除了&#xff0c;这样会造成在运行某些程序的时候&#xff0c;出现组件丢失的提示。例如concrt140.dll丢失&#xff0c;如果不及时处理&#xff0c;会导致系统中不少程序无法正常使用&#xff0c;那么要如何处理这个问题呢&am…

SpringBoot案例-员工管理-删除员工

查看页面原型&#xff0c;明确需求 页面原型 有批量删除和删除单个数据 需求 查看接口文档 接口文档的链接如下&#xff1a; 【腾讯文档】SpringBoot案例所需文档 https://docs.qq.com/doc/DUkRiTWVaUmFVck9N 思路分析 删除单个数据&#xff0c;将要删除的员工信息的id传…