Redis高可用:主从复制详解

news2025/1/19 2:51:57

目录

1.什么是主从复制?

2.优势

3.主从复制的原理

4.全量复制和增量复制

   4.1 全量复制

   4.2 增量复制

5.相关问题总结

   5.1 当主服务器不进行持久化时复制的安全性

   5.2 为什么主从全量复制使用RDB而不使用AOF?

   5.3 为什么还有无磁盘复制模式?

   5.4 为什么还会有从库的从库的设计?

   5.5 读写分离及其中的问题


1.什么是主从复制?

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。

通常情况下Master写为主、Slave读为主。如下图所示:

主从库之间采用的是读写分离的方式。

  • 读操作:主库、从库都可以接收;
  • 写操作:首先到主库执行,然后,主库将写操作同步给从库。

2.优势

主从复制的作用主要包括:

  • 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  • 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  • 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  • 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

3.主从复制的原理

 

主从复制过程大体可以分为3个阶段:连接建立阶段(即准备阶段)、数据同步阶段、命令传播阶段;下面分别进行介绍。 

1. 连接建立阶段

该阶段的主要作用是在主从节点之间建立连接,为数据同步做好准备。

步骤1:保存主节点信息

从节点服务器内部维护了两个字段,即masterhost和masterport字段,用于存储主节点的ip和port信息。

需要注意的是,slaveof是异步命令,从节点完成主节点ip和port的保存后,向发送slaveof命令的客户端直接返回OK,实际的复制操作在这之后才开始进行。

步骤2:建立socket连接

从节点每秒1次调用复制定时函数replicationCron(),如果发现了有主节点可以连接,便会根据主节点的ip和port,创建socket连接。如果连接成功,则:

从节点:为该socket建立一个专门处理复制工作的文件事件处理器,负责后续的复制工作,如接收RDB文件、接收命令传播等。

主节点:接收到从节点的socket连接后(即accept之后),为该socket创建相应的客户端状态,并将从节点看做是连接到主节点的一个客户端,后面的步骤会以从节点向主节点发送命令请求的形式来进行

步骤3:发送ping命令

从节点成为主节点的客户端之后,发送ping命令进行首次请求,目的是:检查socket连接是否可用,以及主节点当前是否能够处理请求。

从节点发送ping命令后,可能出现3种情况:

(1)返回pong:说明socket连接正常,且主节点当前可以处理请求,复制过程继续。

(2)超时:一定时间后从节点仍未收到主节点的回复,说明socket连接不可用,则从节点断开socket连接,并重连。

(3)返回pong以外的结果:如果主节点返回其他结果,如正在处理超时运行的脚本,说明主节点当前无法处理命令,则从节点断开socket连接,并重连。

步骤4:身份验证

如果从节点中设置了masterauth选项,则从节点需要向主节点进行身份验证;没有设置该选项,则不需要验证。从节点进行身份验证是通过向主节点发送auth命令进行的,auth命令的参数即为配置文件中的masterauth的值。

如果主节点设置密码的状态,与从节点masterauth的状态一致(一致是指都存在,且密码相同,或者都不存在),则身份验证通过,复制过程继续;如果不一致,则从节点断开socket连接,并重连。

步骤5:发送从节点端口信息

身份验证之后,从节点会向主节点发送其监听的端口号,主节点将该信息保存到该从节点对应的客户端的slave_listening_port字段中;该端口信息除了在主节点中执行info Replication时显示以外,没有其他作用。

2. 数据同步阶段

主从节点之间的连接建立以后,便可以开始进行数据同步,该阶段可以理解为从节点数据的初始化。具体执行的方式是:从节点向主节点发送psync命令(Redis2.8以前是sync命令),开始同步。

数据同步阶段是主从复制最核心的阶段,根据主从节点当前状态的不同,可以分为全量复制和部分复制,下面会专门讲解这两种复制方式以及psync命令的执行过程,这里不再详述。

需要注意的是,在数据同步阶段之前,从节点是主节点的客户端,主节点不是从节点的客户端;而到了这一阶段及以后,主从节点互为客户端。原因在于:在此之前,主节点只需要响应从节点的请求即可,不需要主动发请求,而在数据同步阶段和后面的命令传播阶段,主节点需要主动向从节点发送请求(如推送缓冲区中的写命令),才能完成复制。

3. 命令传播阶段

数据同步阶段完成后,主从节点进入命令传播阶段;在这个阶段主节点将自己执行的写命令发送给从节点,从节点接收命令并执行,从而保证主从节点数据的一致性。

在命令传播阶段,除了发送写命令,主从节点还维持着心跳机制:PING和REPLCONF ACK。由于心跳机制的原理涉及部分复制,因此将在介绍了部分复制的相关内容后单独介绍该心跳机制。

4.全量复制和增量复制

注意:在2.8版本之前只有全量复制,而2.8版本后有全量和增量复制:

  • 全量(同步)复制:比如第一次同步时
  • 增量(同步)复制:只会把主从库网络断连期间主库收到的命令,同步给从库

 

   4.1 全量复制

当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系,之后会按照三个阶段完成数据的第一次同步。

 

   4.2 增量复制

如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。

  

 

repl_backlog_buffer:它是为了从库断开之后,如何找到主从差异数据而设计的环形缓冲区,从而避免全量复制带来的性能开销。如果从库断开时间太久,repl_backlog_buffer环形缓冲区被主库的写命令覆盖了,那么从库连上主库后只能乖乖地进行一次全量复制,所以repl_backlog_buffer配置尽量大一些,可以降低主从断开后全量复制的概率。而在repl_backlog_buffer中找主从差异的数据后,如何发给从库呢?这就用到了replication buffer。

replication buffer:Redis和客户端通信也好,和从库通信也好,Redis都需要给分配一个 内存buffer进行数据交互,客户端是一个client,从库也是一个client,我们每个client连上Redis后,Redis都会分配一个client buffer,所有数据交互都是通过这个buffer进行的:Redis先把数据写到这个buffer中,然后再把buffer中的数据发到client socket中再通过网络发送出去,这样就完成了数据交互。所以主从在增量同步时,从库作为一个client,也会分配一个buffer,只不过这个buffer专门用来传播用户的写命令到从库,保证主从数据一致,我们通常把它叫做replication buffer。

  • 如果在网络断开期间,repl_backlog_size环形缓冲区写满之后,从库是会丢失掉那部分被覆盖掉的数据,还是直接进行全量复制呢

对于这个问题来说,有两个关键点:

  1. 一个从库如果和主库断连时间过长,造成它在主库repl_backlog_buffer的slave_repl_offset位置上的数据已经被覆盖掉了,此时从库和主库间将进行全量复制。

  2. 每个从库会记录自己的slave_repl_offset,每个从库的复制进度也不一定相同。在和主库重连进行恢复时,从库会通过psync命令把自己记录的slave_repl_offset发给主库,主库会根据从库各自的复制进度,来决定这个从库可以进行增量复制,还是全量复制。

这里存在实时复制的一些知识:

5.相关问题总结

   5.1 当主服务器不进行持久化时复制的安全性

在进行主从复制设置时,强烈建议在主服务器上开启持久化,当不能这么做时,比如考虑到延迟的问题,应该将实例配置为避免自动重启。

为什么不持久化的主服务器自动重启非常危险呢?为了更好的理解这个问题,看下面这个失败的例子,其中主服务器和从服务器中数据库都被删除了。

  • 我们设置节点A为主服务器,关闭持久化,节点B和C从节点A复制数据。
  • 这时出现了一个崩溃,但Redis具有自动重启系统,重启了进程,因为关闭了持久化,节点重启后只有一个空的数据集。
  • 节点B和C从节点A进行复制,现在节点A是空的,所以节点B和C上的复制数据也会被删除。
  • 当在高可用系统中使用Redis Sentinel(哨兵),关闭了主服务器的持久化,并且允许自动重启,这种情况是很危险的。比如主服务器可能在很短的时间就完成了重启,以至于Sentinel都无法检测到这次失败,那么上面说的这种失败的情况就发生了。

如果数据比较重要,并且在使用主从复制时关闭了主服务器持久化功能的场景中,都应该禁止实例自动重启。

   5.2 为什么主从全量复制使用RDB而不使用AOF?

1、RDB文件内容是经过压缩的二进制数据(不同数据类型数据做了针对性优化),文件很小。而AOF文件记录的是每一次写操作的命令,写操作越多文件会变得很大,其中还包括很多对同一个key的多次冗余操作。在主从全量数据同步时,传输RDB文件可以尽量降低对主库机器网络带宽的消耗,从库在加载RDB文件时,一是文件小,读取整个文件的速度会很快,二是因为RDB文件存储的都是二进制数据,从库直接按照RDB协议解析还原数据即可,速度会非常快,而AOF需要依次重放每个写命令,这个过程会经历冗长的处理逻辑,恢复速度相比RDB会慢得多,所以使用RDB进行主从全量复制的成本最低。

2、假设要使用AOF做全量复制,意味着必须打开AOF功能,打开AOF就要选择文件刷盘的策略,选择不当会严重影响Redis性能。而RDB只有在需要定时备份和主从全量复制数据时才会触发生成一次快照。而在很多丢失数据不敏感的业务场景,其实是不需要开启AOF的。

   5.3 为什么还有无磁盘复制模式?

Redis 默认是磁盘复制,但是如果使用比较低速的磁盘,这种操作会给主服务器带来较大的压力。Redis从2.8.18版本开始尝试支持无磁盘的复制。使用这种设置时,子进程直接将RDB通过网络发送给从服务器,不使用磁盘作为中间存储。

无磁盘复制模式:master创建一个新进程直接dump RDB到slave的socket,不经过主进程,不经过硬盘。适用于disk较慢,并且网络较快的时候。

使用repl-diskless-sync配置参数来启动无磁盘复制。

使用repl-diskless-sync-delay 参数来配置传输开始的延迟时间;master等待一个repl-diskless-sync-delay的秒数,如果没slave来的话,就直接传,后来的得排队等了; 否则就可以一起传。

   5.4 为什么还会有从库的从库的设计?

通过分析主从库间第一次数据同步的过程,你可以看到,一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件

如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量复制。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。那么,有没有好的解决方法可以分担主库压力呢?

其实是有的,这就是“主 - 从 - 从”模式。

在刚才介绍的主从库模式中,所有的从库都是和主库连接,所有的全量复制也都是和主库进行的。现在,我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上

这样一来,这些从库就会知道,在进行同步时,不用再和主库进行交互了,只要和级联的从库进行写操作同步就行了,这就可以减轻主库上的压力,如下图所示:

级联的“主-从-从”模式好了,到这里,我们了解了主从库间通过全量复制实现数据同步的过程,以及通过“主 - 从 - 从”模式分担主库压力的方式。那么,一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。

   5.5 读写分离及其中的问题

在主从复制基础上实现的读写分离,可以实现Redis的读负载均衡:由主节点提供写服务,由一个或多个从节点提供读服务(多个从节点既可以提高数据冗余程度,也可以最大化读负载能力);在读负载较大的应用场景下,可以大大提高Redis服务器的并发量。下面介绍在使用Redis读写分离时,需要注意的问题。

  • 延迟与不一致问题

前面已经讲到,由于主从复制的命令传播是异步的,延迟与数据的不一致不可避免。如果应用对数据不一致的接受程度程度较低,可能的优化措施包括:优化主从节点之间的网络环境(如在同机房部署);监控主从节点延迟(通过offset)判断,如果从节点延迟过大,通知应用不再通过该从节点读取数据;使用集群同时扩展写负载和读负载等。

在命令传播阶段以外的其他情况下,从节点的数据不一致可能更加严重,例如连接在数据同步阶段,或从节点失去与主节点的连接时等。从节点的slave-serve-stale-data参数便与此有关:它控制这种情况下从节点的表现;如果为yes(默认值),则从节点仍能够响应客户端的命令,如果为no,则从节点只能响应info、slaveof等少数命令。该参数的设置与应用对数据一致性的要求有关;如果对数据一致性要求很高,则应设置为no。

  • 数据过期问题

在单机版Redis中,存在两种删除策略:

  • 惰性删除:服务器不会主动删除数据,只有当客户端查询某个数据时,服务器判断该数据是否过期,如果过期则删除。
  • 定期删除:服务器执行定时任务删除过期数据,但是考虑到内存和CPU的折中(删除会释放内存,但是频繁的删除操作对CPU不友好),该删除的频率和执行时间都受到了限制。

在主从复制场景下,为了主从节点的数据一致性,从节点不会主动删除数据,而是由主节点控制从节点中过期数据的删除。由于主节点的惰性删除和定期删除策略,都不能保证主节点及时对过期数据执行删除操作,因此,当客户端通过Redis从节点读取数据时,很容易读取到已经过期的数据。

Redis 3.2中,从节点在读取数据时,增加了对数据是否过期的判断:如果该数据已过期,则不返回给客户端;将Redis升级到3.2可以解决数据过期问题。

  • 故障切换问题

在没有使用哨兵的读写分离场景下,应用针对读和写分别连接不同的Redis节点;当主节点或从节点出现问题而发生更改时,需要及时修改应用程序读写Redis数据的连接;连接的切换可以手动进行,或者自己写监控程序进行切换,但前者响应慢、容易出错,后者实现复杂,成本都不算低。

  • 总结

在使用读写分离之前,可以考虑其他方法增加Redis的读负载能力:如尽量优化主节点(减少慢查询、减少持久化等其他情况带来的阻塞等)提高负载能力;使用Redis集群同时提高读负载能力和写负载能力等。如果使用读写分离,可以使用哨兵,使主从节点的故障切换尽可能自动化,并减少对应用程序的侵入。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/896059.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【学习FreeRTOS】第10章——FreeRTOS时间片调度

1.时间片调度简介(同第2章1.3) 同等优先级任务轮流地享有相同的 CPU 时间(可设置), 叫时间片,在FreeRTOS中,一个时间片就等于SysTick 中断周期 首先Task1运行完一个时间片后,切换至Task2运行Task2运行完…

从SaaS到RPA,没有真正“完美”的解决方案!

众所周知,SaaS行业越来越卷,利润也越来越“薄”,这是传统软件厂商的悲哀,也是未来数字化行业不得不面对的冷峻现状之一。 随着基于aPaaS、低代码的解决方案之流行,SaaS行业变得越来越没有技术门槛,IT人员的…

Vue3.X 创建简单项目

一、环境安装与检查 首先,我们要确保我们安装了构建vue框架的环境,不会安装的请自行百度,有很多安装教程。检查环境 node -v # 如果没有安装nodejs请安装,安装教程自行百度 vue -V# 没有安装,请执行npm install -g v…

数据挖掘 | 零代码采集房源数据,支持自动翻页、数据排重等

1 前言 城市规划、商业选址等应用场景中经常会对地区房价、地域价值进行数据分析,其中地区楼盘房价是分析数据中重要的信息参考点,一些互联网网站上汇聚了大量房源信息,通过收集此类数据,能够对地区房价的分析提供参考依据。 如何…

ld链接文件和startup文件分析和优化--基于RT1176

ld链接文件关系到程序的代码段数据段bss段及其用户自定义段的运行位置,ld文件中的各个段都会在main函数之前,从加载域拷贝到运行域中。本章将具体介绍如何修改ld和startup文件。 软件平台:VSCODEGCC工具链 硬件平台:rt1176开发板…

如何在HTML中使用React

突发奇想 查了查真的可以,官方文档: 在网站中添加 React – React 开始 引入js <!-- 开发环境使用 --><script src"https://unpkg.com/react18/umd/react.development.js"></script><script src"https://unpkg.com/react-dom18/umd/reac…

ROS局部路径规划器插件teb_local_planner流程梳理(下)

在我之前的文章《ROS导航包Navigation中的 Movebase节点路径规划相关流程梳理》中已经介绍过Move_base节点调用局部路径规划器插件的接口函数是computeVelocityCommands&#xff0c;本部分来&#xff0c;我们从这个函数入手梳理teb_local_planner功能包的工作流程。 ☆注&#…

进入银行科技部半年,已经丧失跳槽的能力了

大家好&#xff0c;我是锋哥!&#xff01; 学弟分享 我是一个杭州双非的本科生&#xff0c;2022届毕业之后进了某银行的科技部工作&#xff0c;年包 20w。 当时想着在银行也算是一份安稳的工作&#xff0c;因此选择了给钱最多的一个&#xff0c;想着自己走上了金融 科技的赛…

Compose - 修饰符 Modifier

一、概念 四大使用场景&#xff1a; 修改外观&#xff08;尺寸、样式、布局、行为&#xff09;。添加额外信息&#xff08;如无障碍标签&#xff09;。添加交互功能&#xff08;点击、滚动、拖拽、缩放&#xff09;。处理用户输入。 1.1 为组合函数添加 Modifier 参数 任何一…

Linux网络编程:网络基础

文章目录&#xff1a; 1.协议 2.锁 3.网络层次模型 4.以太网帧和ARP协议 5.IP协议 6.UDP协议 7.TCP协议 8.BS模式和CS模式 9.网络套接字(socket) 10.网络字节序 11.IP地址转换函数 12.sockaddr地址结构 学习Linux的网络编程原则上基于&#xff1a;Linux的系统编程…

中大许少辉博士《乡村振兴战略下传统村落文化旅游设计》中国建筑工业出版社八一付梓。

中大许少辉博士《乡村振兴战略下传统村落文化旅游设计》中国建筑工业出版社八一付梓。

gdb调试的经验基本流程处理

一、启动调试 1、gdb启动 gdb启动非常简单&#xff0c;只要直接执行下面的命令&#xff1a; gdb exename(调试文件的名称)2、设置参数 如果需要调试的程序需要输入参数怎么办呢&#xff1f;有三种方法可以实现&#xff1a; a、在启动调试程序时使用命令参数设置 gdb --args …

Linux中启动docker 出现 ‘ Failed to start docker.service: Unit not found. ’ 错误

启动docker 出现 ‘ Failed to start docker.service: Unit not found. ’ 错误 这是因为缺少 rhel-push-plugin.socket 单元&#xff0c;该单元是rhel-push-plugin软件包的一部分。所以我们执行以下指令就可以成功解决&#xff1a; curl -sSL https://get.docker.com/ | sh 执…

搭建redis集群

前言 redis 集群分为一下几种&#xff1a; 【主从模式】&#xff1a;一般情况大多都是读多写少的情况&#xff0c;主从模式可以将读写分离&#xff0c;主库写&#xff0c;从库只负责读取的情况&#xff0c;这从如果任何一个从库宕机的情况&#xff0c;整个集群仍然可以提供工作…

使用GUI Guider工具开发嵌入式GUI应用(6)-切换多screen换场景

使用GUI Guider工具开发嵌入式GUI应用&#xff08;6&#xff09;-切换多screen换场景 本节将展示使用GUI Guider实现切换显示页面功能。 这里设计的用例是&#xff1a; 创建3张页面&#xff0c;screen_0,screen_1和screen_2。分别在每个页面上中放置一个Label&#xff08;最…

仿牛客论坛项目day7|Kafka

一、阻塞队列 创建了一个生产者线程和一个消费者线程。生产者线程向队列中放入元素&#xff0c;消费者线程从队列中取出元素。我们可以看到&#xff0c;当队列为空时&#xff0c;消费者线程会被阻塞&#xff0c;直到生产者线程向队列中放入新的元素。 二、Kafka入门 发布、订阅…

亿图脑图MindMaster思维导图及亿图图示会员-超值途径

亿图脑图MindMaster思维导图及亿图图示会员 先简单看一下这两软件&#xff1a; MindMaster 亿图图示 丰富的社区&#xff0c;便捷易操作的界面&#xff0c;还有耐看的UI设计&#xff1b;要是再有点特权&#xff0c;真的是锦上添花~ 如果需要MindMaster思维导图或者亿图图示VIP…

Android Retrofit原理浅析

官方地址:Retrofit 原理:Retrofit 本质上是代理了OKhttp,使用代理模式,Type-Safe 类型安全 编译器把类型检查出 避免类型错误, enqueue 异步 切换线程 execute 同步 不切换线程 enqueue:Call接口定义的抽象方法 Retrofit.Create() 方法首先验证接口validateServiceInterf…

ps吸管工具用不了怎么办?

我们的办公神器ps软件&#xff0c;大家一定是耳熟能详的吧。Adobe photoshop是电影、视频和多媒体领域的专业人士&#xff0c;使用3D和动画的图形和Web设计人员&#xff0c;以及工程和科学领域的专业人士的理想选择。Photoshop支持宽屏显示器的新式版面、集20多个窗口于一身的d…

小数据 vs 大数据:为AI另辟蹊径的可操作数据

在人工智能背景下&#xff0c;您可能已听说过“大数据”这一流行语&#xff0c;那“小数据”这一词呢&#xff0c;您有听说过吗&#xff1f;无论您听过与否&#xff0c;小数据都无处不在&#xff1a;线上购物体验、航空公司推荐、天气预报等均依托小数据。小数据即一种采用可访…