dist 的性质
对于一棵二叉树,我们定义左孩子或右孩子为空的节点为外节点,定义外节点的 distdist 为 11,空节点的 distdist 为 00,不是外节点也不是空节点的 distdist 为其到子树中最近的外节点的距离加一。
一棵根的 distdist 为 xx 的二叉树至少有 2x−12x−1 个节点。此性质所有二叉树都有,并非左偏树特有。
distdist 不是深度,左偏树的深度没有保证,一条向左的链也是左偏树。
左偏树的性质
左偏树是一棵二叉树,并且是“左偏”的,即每个节点左儿子的 distdist 都大于等于右儿子的 distdist。
因此,左偏树中每个节点的 distdist 是它右儿子的 distdist 加一。
变量
int lson[N], rson[N], fa[N], fat[N];
ll val[N], dist[N];
lson
: 左孩子(左偏);rson
: 右孩子;fa
: 父节点;fat
: 祖先(并查集);val
: 权值;dist
: 就是 distdist。
操作
-
合并
int merge(int x, int y) { // 合并
if (!x || !y) {
return x | y;
}
if (val[x] > val[y] || (val[x] == val[y] && x > y))
swap(x, y);
rson[x] = merge(rson[x], y);
fat[rson[x]] = fa[rson[x]] = x;
if (dist[lson[x]] < dist[rson[x]])
swap(lson[x], rson[x]);
dist[x] = dist[rson[x]] + 1;
return x;
}
if (!x || !y) { return x | y; }
如果与空节点合并,则直接合并即可if (val[x] > val[y] || (val[x] == val[y] && x > y))
说明这是个小根堆,小元素在上面。if (dist[lson[x]] < dist[rson[x]]) swap(lson[x], rson[x]);
维护左偏的性质。
-
删除任意一个节点
左偏树是不支持删除给定权值的点的,只能删除知道点的标号的点。
void earse(int u) { // 删除任意一点
int tmp = merge(lson[u], rson[u]), fu = fa[u];
fat[tmp] = fa[tmp] = fu;
fat[u] = fa[u] = tmp;
lson[fu] == u ? lson[fu] = tmp : rson[fu] = tmp;
while (fu) {
if (dist[lson[fu]] < dist[rson[fu]])
swap(lson[fu], rson[fu]);
if (dist[fu] == dist[rson[fu]] + 1)
return ;
dist[fu] = dist[rson[fu]] + 1;
fu = fa[fu];
}
}
int tmp = merge(lson[u], rson[u]), fu = fa[u];
先将被删节点的左右孩子合并。fat[tmp] = fa[tmp] = fu;
处理好父亲和孩子的关系。
while (fu) {
if (dist[lson[fu]] < dist[rson[fu]])
swap(lson[fu], rson[fu]);
if (dist[fu] == dist[rson[fu]] + 1)
return ;
dist[fu] = dist[rson[fu]] + 1;
fu = fa[fu];
}
删除点之后可能不符合左偏性质,需要我们向上修改,直到到根节点或符合左偏性质为止。
-
查询 uu 点所在堆的堆顶元素的标号
这个操作类似于并查集操作。
int find(int u) { // 查询堆顶的元素的标号
return (fat[u] == u || fat[u] == 0) ? u : fat[u] = find(fat[u]);
}
-
删除 uu 点所在堆的堆顶元素
void pop(int u) { // 弹出 u 点所在对的堆顶元素
int g = find(u);
earse(g);
}
-
查询 uu 点所在堆的堆顶元素
ll top(int u) { // 查询 u 点所在堆的堆顶元素
int g = find(u);
return val[g];
}
-
建树操作
int build(int n) { // 建树
queue<int> q;
for (int i = 1; i <= n; ++ i) {
q.push(i);
}
int x, y, z;
while (q.size() > 1) {
x = q.front(), q.pop();
y = q.front(), q.pop();
z = merge(x, y), q.push(z);
}
return q.front();
}
模板
// 左偏树(小根堆)
struct leftist_tree {
int lson[N], rson[N], fa[N], fat[N];
ll val[N], dist[N];
int merge(int x, int y) { // 合并
if (!x || !y) {
return x | y;
}
if (val[x] > val[y] || (val[x] == val[y] && x > y))
swap(x, y);
rson[x] = merge(rson[x], y);
fat[rson[x]] = fa[rson[x]] = x;
if (dist[lson[x]] < dist[rson[x]])
swap(lson[x], rson[x]);
dist[x] = dist[rson[x]] + 1;
return x;
}
int find(int u) { // 查询堆顶的元素的标号
return (fat[u] == u || fat[u] == 0) ? u : fat[u] = find(fat[u]);
}
void earse(int u) { // 删除任意一点
int tmp = merge(lson[u], rson[u]), fu = fa[u];
fat[tmp] = fa[tmp] = fu;
fat[u] = fa[u] = tmp;
lson[fu] == u ? lson[fu] = tmp : rson[fu] = tmp;
while (fu) {
if (dist[lson[fu]] < dist[rson[fu]])
swap(lson[fu], rson[fu]);
if (dist[fu] == dist[rson[fu]] + 1)
return ;
dist[fu] = dist[rson[fu]] + 1;
fu = fa[fu];
}
}
ll top(int u) { // 查询 u 点所在堆的堆顶元素
int g = find(u);
return val[g];
}
void pop(int u) { // 弹出 u 点所在对的堆顶元素
int g = find(u);
earse(g);
}
int build(int n) { // 建树
queue<int> q;
for (int i = 1; i <= n; ++ i) {
q.push(i);
}
int x, y, z;
while (q.size() > 1) {
x = q.front(), q.pop();
y = q.front(), q.pop();
z = merge(x, y), q.push(z);
}
return q.front();
}
};
pb_ds 中的堆
__gnu_pbds :: priority_queue
成员函数
push()
: 向堆中压入一个元素,返回该元素位置的迭代器。pop()
: 将堆顶元素弹出。top()
: 返回堆顶元素。size()
: 返回元素个数。empty()
: 返回是否非空。modify(point_iterator, const key)
: 把迭代器位置的 key
修改为传入的 key
,并对底层储存结构进行排序。 erase(point_iterator)
: 把迭代器位置的键值从堆中擦除。join(__gnu_pbds :: priority_queue &other)
: 把 other
合并到 *this
并把 other
清空。